
Intro to Quantum Computing

Michael Williams de la Bastida

UCL

August 22, 2023

Aims

I can’t make you an expert in a day (sorry!)

Be able to build and analyse quantum circuits

Understand how quantum computers work

Understand how quantum computing fits in

Feel confident to learn more on your own

Outline

1 Why bother?

2 Computational Logic

3 Quantum States

4 Quantum Circuits

5 Information & Communication

6 Hardware

7 Compilers

Menti

Before we start, join the mentimeter interactive session.

Why bother?

Complexity

Check odd or
even

Add two
numbers

Complexity

Check odd or
even

Add two
numbers

Multiply two
numbers

Complexity

Check odd or
even

Add two
numbers

Multiply two
numbers

Factorise a
number

Complexity

Check odd or
even

Add two
numbers

Multiply two
numbers

Factorise a
number

Find the quickest
route for a
delivery truck

Complexity

Find the quickest
route for a
delivery truck

Find all possible
energy states of
a molecule

Feynman

Uses for Quantum Computers

Design Pharmaceuticals

Save energy

Encryption / Decryption

Machine Learning

More we don’t know yet!

Uses for Quantum Computers

Design Pharmaceuticals

Save energy

Encryption / Decryption

Machine Learning

More we don’t know yet!

Uses for Quantum Computers

Design Pharmaceuticals

Save energy

Encryption / Decryption

Machine Learning

More we don’t know yet!

Uses for Quantum Computers

Design Pharmaceuticals

Save energy

Encryption / Decryption

Machine Learning

More we don’t know yet!

Uses for Quantum Computers

Design Pharmaceuticals

Save energy

Encryption / Decryption

Machine Learning

More we don’t know yet!

Computational Logic

What does a computer do?

We’re going to approach quantum computing from the computing side,
and add in quantum mechanics as we go.

1 Arithmetic / Logic

2 Read / Write Memory

3 Control Flow

Logic Gates

NOT AND OR

NOT Gate

OFF ON ON OFF

NOT Gate

False True True False

NOT Gate

OFF ON

0 1

ON OFF

1 0

AND Gate

0
0

0

0
1

0

1
0

0

1
1

1

OR Gate

0
0

0

0
1

1

1
0

1

1
1

1

Combining gates

We can combine gates into circuits.

Combining gates

We can combine gates into circuits.

FANOUT

We can split the wire in two.

FANOUT

This allows us to share inputs between gates.

First Circuit

0
1

1

X

First Circuit

1
1

0

X

Universality of NAND

Theorem

All logical operations can be completed with the NAND gate, they are
said to be universal.

Try to put these together to make something which behaves the same
way as NOT, AND and OR gate.1

1(Hint: You can split lines or cross them over!)

Universality of NAND

Universality of NAND

Universality of NAND

States

For binary systems we can define two states of each input.

OFF = |0⟩ ON = |1⟩

Operators

Rather than draw the gate we can use its name, like we would for a
function.

0 1 1 0

NOT |0⟩ = |1⟩ NOT |1⟩ = |0⟩

We can go one step further and use a symbol.

N̂ |0⟩ = |1⟩ N̂ |1⟩ = |0⟩

Gates are represented by symbols with hats, called operators.

Operators

Rather than draw the gate we can use its name, like we would for a
function.

0 1 1 0

NOT |0⟩ = |1⟩ NOT |1⟩ = |0⟩

We can go one step further and use a symbol.

N̂ |0⟩ = |1⟩ N̂ |1⟩ = |0⟩

Gates are represented by symbols with hats, called operators.

Operators

Rather than draw the gate we can use its name, like we would for a
function.

0 1 1 0

NOT |0⟩ = |1⟩ NOT |1⟩ = |0⟩

We can go one step further and use a symbol.

N̂ |0⟩ = |1⟩ N̂ |1⟩ = |0⟩

Gates are represented by symbols with hats, called operators.

Multi-bit Operators

We can apply multi-bit operators to multi-bit states.

Â |00⟩ = |0⟩
Â |01⟩ = |0⟩
Â |10⟩ = |0⟩
Â |11⟩ = |1⟩

Multi-bit Operators

We can apply multi-bit operators to multi-bit states.

Ô |00⟩ = |0⟩
Ô |01⟩ = |1⟩
Ô |10⟩ = |1⟩
Ô |11⟩ = |1⟩

Rules for Operators

Operators act to their right.

N̂ |0⟩ = |1⟩

N̂Â |11⟩ = N̂
(

Â |11⟩
)

= N̂ |1⟩ = |0⟩

Rules for Operators

Operators act to their right.

N̂ |0⟩ = |1⟩

N̂Â |11⟩ = N̂
(

Â |11⟩
)

= N̂ |1⟩ = |0⟩

Rules for Operators

Operators only act on states with the correct size of input

Â |0⟩ = 0

N̂ |11⟩ = 0

Note that this is 0 and not a state at all!

Rules for Operators

Operators can be applied multiple times.

N̂N̂ |1⟩ = N̂ |0⟩ = |1⟩

Identity Operator

We define the Identity Operator Î which does nothing to change the
state.

Î |0⟩ = |0⟩ Î |1⟩ = |1⟩

This is equivalent to a wire in our circuit.

0 0

Identity Operator

This allows us write about operators independent of states.

N̂N̂ |0⟩ = N̂ |1⟩ = Î |0⟩

N̂N̂ |1⟩ = N̂ |0⟩ = Î |1⟩

N̂N̂ = Î

States

For binary systems we can define two states of each input.

OFF = |0⟩ ON = |1⟩

The states have a property called the inner product.

⟨0|0⟩ = ⟨1|1⟩ = 1

⟨0|1⟩ = ⟨1|0⟩ = 0

This is essentially the question ’are these the same state?’

States

For binary systems we can define two states of each input.

OFF = |0⟩ ON = |1⟩

The states have a property called the inner product.

⟨0|0⟩ = ⟨1|1⟩ = 1

⟨0|1⟩ = ⟨1|0⟩ = 0

This is essentially the question ’are these the same state?’

States

For binary systems we can define two states of each input.

OFF = |0⟩ ON = |1⟩

The states have a property called the inner product.

⟨0|0⟩ = ⟨1|1⟩ = 1

⟨0|1⟩ = ⟨1|0⟩ = 0

This is essentially the question ’are these the same state?’

States

For binary systems we can define two states of each input.

OFF = |0⟩ ON = |1⟩

The states have a property called the inner product.

⟨0|0⟩ = ⟨1|1⟩ = 1

⟨0|1⟩ = ⟨1|0⟩ = 0

This is essentially the question ’are these the same state?’

Multi-bit States

To combine single bit states into larger sizes we use a tensor product.2

|x⟩ ⊗ |y⟩ = |xy⟩

e.g. |0⟩ ⊗ |1⟩ = |01⟩

2We don’t want to multiply the values, just list them in order!

Multi-bit Inner Product

We can work out the inner product using the single bit definitions.

⟨ab|cd⟩

= (⟨a|⊗ ⟨b|)(|c⟩ ⊗ |d⟩)

= ⟨a|c⟩ ⊗ ⟨b|d⟩

Similar states give 1:
⟨00|00⟩ = 1

Different states give 0:
⟨00|11⟩ = 0
⟨01|11⟩ = 0
⟨10|11⟩ = 0

Multi-bit Inner Product

We can work out the inner product using the single bit definitions.

⟨ab|cd⟩

= (⟨a|⊗ ⟨b|)(|c⟩ ⊗ |d⟩)

= ⟨a|c⟩ ⊗ ⟨b|d⟩

Similar states give 1:
⟨00|00⟩ = 1

Different states give 0:
⟨00|11⟩ = 0
⟨01|11⟩ = 0
⟨10|11⟩ = 0

Rules for Operators

However, we can use the tensor product to make larger operators.

Î⊗ N̂ |11⟩ = (Î⊗ N̂)(|1⟩ ⊗ |1⟩)

= Î |1⟩ ⊗ N̂ |1⟩

= |1⟩ ⊗ |0⟩

= |10⟩

Similarly (N̂ ⊗ Î) |11⟩ = |01⟩ and (N̂ ⊗ N̂) |11⟩ = |00⟩

Outer Product

So far we’ve learned the tensor product

|0⟩ ⊗ |1⟩ = |01⟩

and the inner product

⟨0|1⟩ = 0

Can you guess what an outer product looks like?

|0⟩ ⟨1|

Outer Product

So far we’ve learned the tensor product

|0⟩ ⊗ |1⟩ = |01⟩

and the inner product

⟨0|1⟩ = 0

Can you guess what an outer product looks like?

|0⟩ ⟨1|

Outer Product

So far we’ve learned the tensor product

|0⟩ ⊗ |1⟩ = |01⟩

and the inner product

⟨0|1⟩ = 0

Can you guess what an outer product looks like?

|0⟩ ⟨1|

Outer Product

So far we’ve learned the tensor product

|0⟩ ⊗ |1⟩ = |01⟩

and the inner product

⟨0|1⟩ = 0

Can you guess what an outer product looks like?

|0⟩ ⟨1|

Outer Product

The outer product can be used to change a state. We start with |1⟩.

|0⟩ ⟨1| |1⟩

= |0⟩ ⟨1|1⟩

= |0⟩ × 1

The state has been changed from |1⟩ to |0⟩!

|OUT ⟩ ⟨IN |

Outer Product

The outer product can be used to change a state. We start with |1⟩.

|0⟩ ⟨1| |1⟩

= |0⟩ ⟨1|1⟩

= |0⟩ × 1

The state has been changed from |1⟩ to |0⟩!

|OUT ⟩ ⟨IN |

Outer Product

The outer product can be used to change a state. We start with |1⟩.

|0⟩ ⟨1| |1⟩

= |0⟩ ⟨1|1⟩

= |0⟩ × 1

The state has been changed from |1⟩ to |0⟩!

|OUT ⟩ ⟨IN |

Outer Product

The outer product can be used to change a state. We start with |1⟩.

|0⟩ ⟨1| |1⟩

= |0⟩ ⟨1|1⟩

= |0⟩ × 1

The state has been changed from |1⟩ to |0⟩!

|OUT ⟩ ⟨IN |

Operators from Outer Products

We already saw that |0⟩ ⟨1| changed 1 to 0.

|1⟩ ⟨0| does the opposite, it changes 0 to 1.

These are the conditions for the NOT gate and N̂ operator.

N̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|

Operators from Outer Products

We already saw that |0⟩ ⟨1| changed 1 to 0.

|1⟩ ⟨0| does the opposite, it changes 0 to 1.

These are the conditions for the NOT gate and N̂ operator.

N̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|

Operators from Outer Products

Lets see how he N̂ operator works.

N̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|

N̂ |0⟩ = (|0⟩ ⟨1|+ |1⟩ ⟨0|) |0⟩

N̂ |0⟩ = |0⟩ ⟨1|0⟩+ |1⟩ ⟨0|0⟩

N̂ |0⟩ = |0⟩ × 0 + |1⟩ × 1

N̂ |0⟩ = |1⟩

Operators from Outer Products

Lets see how he N̂ operator works.

N̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|

N̂ |0⟩ = (|0⟩ ⟨1|+ |1⟩ ⟨0|) |0⟩

N̂ |0⟩ = |0⟩ ⟨1|0⟩+ |1⟩ ⟨0|0⟩

N̂ |0⟩ = |0⟩ × 0 + |1⟩ × 1

N̂ |0⟩ = |1⟩

Operators from Outer Products

Lets see how he N̂ operator works.

N̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|

N̂ |0⟩ = (|0⟩ ⟨1|+ |1⟩ ⟨0|) |0⟩

N̂ |0⟩ = |0⟩ ⟨1|0⟩+ |1⟩ ⟨0|0⟩

N̂ |0⟩ = |0⟩ × 0 + |1⟩ × 1

N̂ |0⟩ = |1⟩

Operators from Outer Products

Lets see how he N̂ operator works.

N̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|

N̂ |0⟩ = (|0⟩ ⟨1|+ |1⟩ ⟨0|) |0⟩

N̂ |0⟩ = |0⟩ ⟨1|0⟩+ |1⟩ ⟨0|0⟩

N̂ |0⟩ = |0⟩ × 0 + |1⟩ × 1

N̂ |0⟩ = |1⟩

The AND Operator

Lets build up the Â operator.

Input Output Outer Product
|00⟩ |0⟩ |0⟩ ⟨00|

01⟩	0⟩	0⟩ ⟨01
10⟩	0⟩	0⟩ ⟨10
11⟩	1⟩	1⟩ ⟨11

Â = |0⟩ ⟨00|+ |0⟩ ⟨01|+ |0⟩ ⟨10|+ |1⟩ ⟨11|

Notice that the states on the right have two bits but the states on the left
only have one!

The AND Operator

Lets build up the Â operator.

Input Output Outer Product
|00⟩ |0⟩ |0⟩ ⟨00|
|01⟩ |0⟩ |0⟩ ⟨01|

|10⟩ |0⟩ |0⟩ ⟨10|
|11⟩ |1⟩ |1⟩ ⟨11|

Â = |0⟩ ⟨00|+ |0⟩ ⟨01|+ |0⟩ ⟨10|+ |1⟩ ⟨11|

Notice that the states on the right have two bits but the states on the left
only have one!

The AND Operator

Lets build up the Â operator.

Input Output Outer Product
00⟩	0⟩	0⟩ ⟨00
01⟩	0⟩	0⟩ ⟨01
10⟩	0⟩	0⟩ ⟨10

|11⟩ |1⟩ |1⟩ ⟨11|

Â = |0⟩ ⟨00|+ |0⟩ ⟨01|+ |0⟩ ⟨10|+ |1⟩ ⟨11|

Notice that the states on the right have two bits but the states on the left
only have one!

The AND Operator

Lets build up the Â operator.

Input Output Outer Product
00⟩	0⟩	0⟩ ⟨00
01⟩	0⟩	0⟩ ⟨01
10⟩	0⟩	0⟩ ⟨10
11⟩	1⟩	1⟩ ⟨11

Â = |0⟩ ⟨00|+ |0⟩ ⟨01|+ |0⟩ ⟨10|+ |1⟩ ⟨11|

Notice that the states on the right have two bits but the states on the left
only have one!

The AND Operator

Lets build up the Â operator.

Input Output Outer Product
00⟩	0⟩	0⟩ ⟨00
01⟩	0⟩	0⟩ ⟨01
10⟩	0⟩	0⟩ ⟨10
11⟩	1⟩	1⟩ ⟨11

Â = |0⟩ ⟨00|+ |0⟩ ⟨01|+ |0⟩ ⟨10|+ |1⟩ ⟨11|

Notice that the states on the right have two bits but the states on the left
only have one!

The AND Operator

Lets build up the Â operator.

Input Output Outer Product
00⟩	0⟩	0⟩ ⟨00
01⟩	0⟩	0⟩ ⟨01
10⟩	0⟩	0⟩ ⟨10
11⟩	1⟩	1⟩ ⟨11

Â = |0⟩ ⟨00|+ |0⟩ ⟨01|+ |0⟩ ⟨10|+ |1⟩ ⟨11|

Notice that the states on the right have two bits but the states on the left
only have one!

The OR Operator

Lets build up the Ô operator.

Input Output Outer Product
00⟩	0⟩	0⟩ ⟨00
01⟩	1⟩	1⟩ ⟨01
10⟩	1⟩	1⟩ ⟨10
11⟩	1⟩	1⟩ ⟨11

Ô = |0⟩ ⟨00|+ |1⟩ ⟨01|+ |1⟩ ⟨10|+ |1⟩ ⟨11|

Quantum States

Postulates of QM

1 State Vector

2 Time Evolution

3 Measurements

4 Composite Systems

Postulates of QM

Postulate 1

Any isolated physical system is completely described by a state vector.

A two state quantum system is called a Qubit.

|Ψ⟩ = α |0⟩+ β |1⟩

Where α,β ∈ C (they are complex numbers) 3

⟨Ψ| = ⟨0|α∗ + ⟨1|β∗

⟨Ψ|Ψ⟩ = |α|2 ⟨0|0⟩+ α∗β⟨0|1⟩+ αβ∗⟨1|0⟩+ |β|2 ⟨1|1⟩

1 = |α|2 + |β|2

3where χ = a + ib is a complex number, χ∗ = a − ib.

Postulates of QM

Postulate 1

Any isolated physical system is completely described by a state vector.

A two state quantum system is called a Qubit.

|Ψ⟩ = α |0⟩+ β |1⟩

Where α,β ∈ C (they are complex numbers) 3

⟨Ψ| = ⟨0|α∗ + ⟨1|β∗

⟨Ψ|Ψ⟩ = |α|2 ⟨0|0⟩+ α∗β⟨0|1⟩+ αβ∗⟨1|0⟩+ |β|2 ⟨1|1⟩

1 = |α|2 + |β|2

3where χ = a + ib is a complex number, χ∗ = a − ib.

Postulates of QM

Postulate 1

Any isolated physical system is completely described by a state vector.

A two state quantum system is called a Qubit.

|Ψ⟩ = α |0⟩+ β |1⟩

Where α,β ∈ C (they are complex numbers) 3

⟨Ψ| = ⟨0|α∗ + ⟨1|β∗

⟨Ψ|Ψ⟩ = |α|2 ⟨0|0⟩+ α∗β⟨0|1⟩+ αβ∗⟨1|0⟩+ |β|2 ⟨1|1⟩

1 = |α|2 + |β|2

3where χ = a + ib is a complex number, χ∗ = a − ib.

Postulates of QM

Postulate 1

Any isolated physical system is completely described by a state vector.

A two state quantum system is called a Qubit.

|Ψ⟩ = α |0⟩+ β |1⟩

Where α,β ∈ C (they are complex numbers) 3

⟨Ψ| = ⟨0|α∗ + ⟨1|β∗

⟨Ψ|Ψ⟩ = |α|2 ⟨0|0⟩+ α∗β⟨0|1⟩+ αβ∗⟨1|0⟩+ |β|2 ⟨1|1⟩

1 = |α|2 + |β|2

3where χ = a + ib is a complex number, χ∗ = a − ib.

Inner Product of Different States

Because we have amplitudes for each state |0⟩ and |1⟩ the inner
products of two quantum states have values between 0 and 1.

|Ψ⟩ = α |0⟩+ β |1⟩
|Φ⟩ = γ |0⟩+ δ |1⟩

⟨Ψ|Φ⟩ = α∗γ ⟨0|0⟩+ β∗δ ⟨1|1⟩

⟨Ψ|Φ⟩ = α∗γ+ β∗δ

0 ⩽ ⟨Ψ|Φ⟩ ⩽ 1

Postulates of QM

Postulate 1

Any isolated physical system is completely described by a state vector.

This is true not just for qubits, but for any size of quantum system.

|Ψ⟩ = c0 |ψ0⟩+ c1 |ψ1⟩+ · · ·+ cn |ψn⟩

Where {c0, c1, . . . , cn} ∈ C

|c0|
2 + |c1|

2 + · · ·+ |cn|
2 = 1

Postulates of QM

1 State Vector

2 Time Evolution

3 Measurements

4 Composite Systems

Postulates of QM

Postulate 2

Evolution of a closed system is by unitary transformation.

Unitary here means that the inner product ⟨Ψ|Ψ⟩ is unchanged.

Û |Ψ⟩ = |Φ⟩

⟨Φ|Φ⟩ = 1

Postulates of QM

1 State Vector

2 Time Evolution

3 Measurements

4 Composite Systems

Postulates of QM

Postulate 3

Measurements of quantum systems project the system onto one of its
states.

For a single qubit state |Ψ⟩ = α |0⟩+ β |1⟩, a measurement of the qubit
will transform it into the state |0⟩ with probability |α|2 or |1⟩ with
probability |β|2.

Postulates of QM

1 State Vector

2 Time Evolution

3 Measurements

4 Composite Systems

Postulates of QM

Postulate 4

The state vector of a composite system is the tensor product of the
component systems state vectors.

|Ψ⟩ = α |0⟩+ β |1⟩

|Φ⟩ = γ |0⟩+ δ |1⟩

|Ψ⟩ ⊗ |Φ⟩ = αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩

Quantum Entanglement

Definition

To objects are entangled when their joint state |Ψ⟩ cannot be expressed
as the product of two states |ψ⟩ ⊗ |ψ⟩.

|Ψ⟩ ̸= |ψ⟩ ⊗ |ψ⟩

Exercise

Show that the state |Ψ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ is entangled by proving

there are no values of of α0,α1,β0,β1 such that:
|Ψ⟩ = (α0 |0⟩+ β0 |1⟩)(α1 |0⟩+ β1 |1⟩)

Quantum Entanglement

Definition

To objects are entangled when their joint state |Ψ⟩ cannot be expressed
as the product of two states |ψ⟩ ⊗ |ψ⟩.

|Ψ⟩ ̸= |ψ⟩ ⊗ |ψ⟩

Exercise

Show that the state |Ψ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ is entangled by proving

there are no values of of α0,α1,β0,β1 such that:
|Ψ⟩ = (α0 |0⟩+ β0 |1⟩)(α1 |0⟩+ β1 |1⟩)

Number of Parameters
In the example where we combine two qubits

|Ψ⟩ ⊗ |Φ⟩ = αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩

We need 4 terms to describe the state. If we take the tensor product with
another qubit:

|χ⟩ = ν |0⟩+ µ |1⟩

|Ψ⟩ ⊗ |Φ⟩ ⊗ |χ⟩ = ναγ |000⟩+ ναδ |001⟩+ νβγ |010⟩+ νβδ |011⟩+
µαγ |100⟩+ µαδ |101⟩+ µβγ |110⟩+ µβδ |111⟩

Now there are 8 terms!
Generally, the number of terms is 2N , where N is the number of qubits.

Number of Parameters
In the example where we combine two qubits

|Ψ⟩ ⊗ |Φ⟩ = αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩

We need 4 terms to describe the state. If we take the tensor product with
another qubit:

|χ⟩ = ν |0⟩+ µ |1⟩

|Ψ⟩ ⊗ |Φ⟩ ⊗ |χ⟩ = ναγ |000⟩+ ναδ |001⟩+ νβγ |010⟩+ νβδ |011⟩+
µαγ |100⟩+ µαδ |101⟩+ µβγ |110⟩+ µβδ |111⟩

Now there are 8 terms!
Generally, the number of terms is 2N , where N is the number of qubits.

Number of Parameters
In the example where we combine two qubits

|Ψ⟩ ⊗ |Φ⟩ = αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩

We need 4 terms to describe the state. If we take the tensor product with
another qubit:

|χ⟩ = ν |0⟩+ µ |1⟩

|Ψ⟩ ⊗ |Φ⟩ ⊗ |χ⟩ = ναγ |000⟩+ ναδ |001⟩+ νβγ |010⟩+ νβδ |011⟩+
µαγ |100⟩+ µαδ |101⟩+ µβγ |110⟩+ µβδ |111⟩

Now there are 8 terms!
Generally, the number of terms is 2N , where N is the number of qubits.

Number of Parameters
In the example where we combine two qubits

|Ψ⟩ ⊗ |Φ⟩ = αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩

We need 4 terms to describe the state. If we take the tensor product with
another qubit:

|χ⟩ = ν |0⟩+ µ |1⟩

|Ψ⟩ ⊗ |Φ⟩ ⊗ |χ⟩ = ναγ |000⟩+ ναδ |001⟩+ νβγ |010⟩+ νβδ |011⟩+
µαγ |100⟩+ µαδ |101⟩+ µβγ |110⟩+ µβδ |111⟩

Now there are 8 terms!
Generally, the number of terms is 2N , where N is the number of qubits.

Too many states

The state/operator notation works great for logical circuits. Inputs and
Output are states, and gates are operators which transform the states.

It also works really well for representing quantum states.

However, it gets a little hard to work with for larger states.

State Vectors

We can handle complex states more easily if we switch to expressing
states using vector notation.

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1

)

Vectors

Vectors are often used to point to a location in space.

For instance, here’s a representation of the vector
(

3
2

)

Bloch Sphere
Vectors can be thought of as arrows with a certain length and direction.
Quantum states can be represented by a point on the Bloch Sphere.

Figure: |Ψ⟩ = |0⟩ Figure: |Ψ⟩ = |1⟩

We’ll explore the the Bloch sphere in the practical parts of the day.

Rules for Vectors

With two vectors |x⟩ =
(

a0

b0

)
and |y⟩ =

(
a1

b1

)
, we define:

Addition

|x⟩+ |y⟩ =
(

a0 + a1

b0 + b1

)
Scalar Multiplication Inner Product4

n ∗ |x⟩ =
(

n ∗ a0

n ∗ b0

)
⟨x |y⟩ = a∗

0a1 + b∗
0b1

4if z = x + iy then z∗ = x − iy

Vector Addition

The example we saw already illustrated vector addition.

This shows the addition:(
3
0

)
+

(
0
2

)

Vector Addition

The example we saw already illustrated vector addition.

This shows the addition:(
3
0

)
+

(
0
2

)

Vector Addition

The example we saw already illustrated vector addition.

This shows the addition:(
3
0

)
+

(
0
2

)

Rules for Vectors

With two vectors |x⟩ =
(

a0

b0

)
and |y⟩ =

(
a1

b1

)
, we define:

Addition

|x⟩+ |y⟩ =
(

a0 + a1

b0 + b1

)
Scalar Multiplication Inner Product4

n ∗ |x⟩ =
(

n ∗ a0

n ∗ b0

)
⟨x |y⟩ = a∗

0a1 + b∗
0b1

4if z = x + iy then z∗ = x − iy

Vector Scaling

We can scale this vector too.

1
2 ∗

(
3
2

)
=

(
1.5
1

)

Rules for Vectors

With two vectors |x⟩ =
(

a0

b0

)
and |y⟩ =

(
a1

b1

)
, we define:

Addition

|x⟩+ |y⟩ =
(

a0 + a1

b0 + b1

)
Scalar Multiplication Inner Product4

n ∗ |x⟩ =
(

n ∗ a0

n ∗ b0

)
⟨x |y⟩ = a∗

0a1 + b∗
0b1

4if z = x + iy then z∗ = x − iy

State Vectors

We can handle complex states more easily if we switch to expressing
states using vector notation.

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1

)

⟨0| =
(
1 0

)
⟨1| =

(
0 1

)

Vector Product

The inner product we’ve been using looks very neat with vectors.

⟨0|0⟩ =
(
1 0

)(1
0

)
= 1 ∗ 1 + 0 ∗ 0 = 1

Generally,

⟨x |y⟩ =
(
a b

)(c
d

)
= ac + bd

Inner Product

We can think of the inner product graphically too.

⟨x |y⟩ =
(
3 0

)(2
2

)

Inner Product

We can think of the inner product graphically too.

⟨x |y⟩ =
(
3 0

)(2
2

)

First we project vector x onto y.
Then we find the length of the new

projected vector |z |.

Inner Product

We can think of the inner product graphically too.

⟨x |y⟩ =
(
3 0

)(2
2

)

First we project vector x onto y.
Then we find the length of the new

projected vector |z |.
Finally, we multiply this by the length

of y , |y |.
⟨x |y⟩ = |z ||y |

Orthogonal States

By using this projection method, we see that two orthogonal
(perpendicular) states have an inner product of 0.

⟨x |y⟩ =
(
3 0

)(0
2

)
= 0

Computational Basis

Writing our two states |0⟩ and |1⟩ in this way allows us to make any 2
dimensional vector from a combination of them.

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1

)

(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)

We can this property spanning the 2d vectors.

Computational Basis

Additionally, they cannot be written as linear combinations of each other.

a
(

1
0

)
̸= b

(
0
1

)

They are therefore linearly independent.

Spanning and linear independence are the two criteria that make a set of
vectors a basis.

{|0⟩ , |1⟩} is called the computational basis because it relates most
clearly to states of bits.

Computational Basis

Additionally, they cannot be written as linear combinations of each other.

a
(

1
0

)
̸= b

(
0
1

)
They are therefore linearly independent.

Spanning and linear independence are the two criteria that make a set of
vectors a basis.

{|0⟩ , |1⟩} is called the computational basis because it relates most
clearly to states of bits.

Computational Basis

Additionally, they cannot be written as linear combinations of each other.

a
(

1
0

)
̸= b

(
0
1

)
They are therefore linearly independent.

Spanning and linear independence are the two criteria that make a set of
vectors a basis.

{|0⟩ , |1⟩} is called the computational basis because it relates most
clearly to states of bits.

X Basis

s Spanning and linear independence seem pretty obvious for the
computational basis, but we could make a basis from a different set of
vectors.

|+⟩ = 1√
2

(
1
1

)
|−⟩ = 1√

2

(
1
−1

)

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ |−⟩ = 1√

2
|0⟩− 1√

2
|1⟩

The basis {|+⟩ , |−⟩} is called the X basis, for reasons we’ll see soon.

Exercise

Show that the set {|+⟩ , |−⟩} is a basis for the 2d vectors.

X Basis

s Spanning and linear independence seem pretty obvious for the
computational basis, but we could make a basis from a different set of
vectors.

|+⟩ = 1√
2

(
1
1

)
|−⟩ = 1√

2

(
1
−1

)
|+⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ |−⟩ = 1√

2
|0⟩− 1√

2
|1⟩

The basis {|+⟩ , |−⟩} is called the X basis, for reasons we’ll see soon.

Exercise

Show that the set {|+⟩ , |−⟩} is a basis for the 2d vectors.

X Basis

s Spanning and linear independence seem pretty obvious for the
computational basis, but we could make a basis from a different set of
vectors.

|+⟩ = 1√
2

(
1
1

)
|−⟩ = 1√

2

(
1
−1

)
|+⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ |−⟩ = 1√

2
|0⟩− 1√

2
|1⟩

The basis {|+⟩ , |−⟩} is called the X basis, for reasons we’ll see soon.

Exercise

Show that the set {|+⟩ , |−⟩} is a basis for the 2d vectors.

X Basis

s Spanning and linear independence seem pretty obvious for the
computational basis, but we could make a basis from a different set of
vectors.

|+⟩ = 1√
2

(
1
1

)
|−⟩ = 1√

2

(
1
−1

)
|+⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ |−⟩ = 1√

2
|0⟩− 1√

2
|1⟩

The basis {|+⟩ , |−⟩} is called the X basis, for reasons we’ll see soon.

Exercise

Show that the set {|+⟩ , |−⟩} is a basis for the 2d vectors.

Multi-bit States

To combine single bit states into larger sizes we use a tensor product.

|x⟩ ⊗ |y⟩ = |xy⟩

(
a0

b0

)
⊗

(
a1

b1

)
=

a0

(
a1

b1

)
b0

(
a1

b1

)
 =


a0a1

a0b1

b0a1

b0b1



Matrices

A Matrix can be thought of as a collection of vectors.

M =

a0 b0 c0

a1 b1 c1

a2 b2 c2



Rules for Matrices

Matrices behave quite similarly to vectors.

With two matrices X̂ =

(
a0 b0

c0 d0

)
and Ŷ =

(
a1 b1

c1 d1

)

Addition Scalar Multiplication

X̂ + Ŷ =

(
a0 + a1 b0 + b1

c0 + c1 d0 + d1

)
n ∗ X̂ =

(
n ∗ a0 n ∗ b0

n ∗ c0 n ∗ d0

)

Matrix Multiplication

When a matrix multiplies a vector, it transforms the vector to a new one.

X̂ |y⟩ =
(

a0 b0

c0 d0

)(
α

β

)
=

(
a0α+ b0β

c0α+ d0β

)

This just gives us another vector.

Exercise

Find the vector ν:

ν =

(
2 7
−2 1

)(
−4
3

)

Matrix Multiplication

Similarly matrices can be multiplied together

X̂ Ŷ =

(
a0 b0

c0 d0

)(
α γ

β δ

)
=

(
a0α+ b0β a0γ+ b0δ

c0α+ d0β c0γ+ d0δ

)

Exercise

Find the matrix M:

M =

(
2 7
−2 1

)(
−4 0
3 3

)

Matrix Multiplication

Similarly matrices can be multiplied together

X̂ Ŷ =

(
a0 b0

c0 d0

)(
α γ

β δ

)
=

(
a0α+ b0β a0γ+ b0δ

c0α+ d0β c0γ+ d0δ

)

Exercise

Find the matrix M:

M =

(
2 7
−2 1

)(
−4 0
3 3

)

Matrix Form of Operators

N̂ |0⟩ N̂ |1⟩

N̂
(

1
0

)
N̂
(

0
1

)
(

0 1
1 0

)(
1
0

) (
0 1
1 0

)(
0
1

)
(

0 1
1 0

)(
1
0

)
=

(
0
1

) (
0 1
1 0

)(
0
1

)
=

(
1
0

)

Matrix Form of Operators

N̂ |0⟩ N̂ |1⟩

N̂
(

1
0

)
N̂
(

0
1

)

(
0 1
1 0

)(
1
0

) (
0 1
1 0

)(
0
1

)
(

0 1
1 0

)(
1
0

)
=

(
0
1

) (
0 1
1 0

)(
0
1

)
=

(
1
0

)

Matrix Form of Operators

N̂ |0⟩ N̂ |1⟩

N̂
(

1
0

)
N̂
(

0
1

)
(

0 1
1 0

)(
1
0

) (
0 1
1 0

)(
0
1

)

(
0 1
1 0

)(
1
0

)
=

(
0
1

) (
0 1
1 0

)(
0
1

)
=

(
1
0

)

Matrix Form of Operators

N̂ |0⟩ N̂ |1⟩

N̂
(

1
0

)
N̂
(

0
1

)
(

0 1
1 0

)(
1
0

) (
0 1
1 0

)(
0
1

)
(

0 1
1 0

)(
1
0

)
=

(
0
1

) (
0 1
1 0

)(
0
1

)
=

(
1
0

)

Matrix form of Operators

We can actually find out the matrix form of an operator from its outer
product form.

N̂ = |1⟩ ⟨0|+ |0⟩ ⟨1|

N̂ = 0 |0⟩ ⟨0|+ 1 |1⟩ ⟨0|+ 1 |0⟩ ⟨1|+ 0 |1⟩ ⟨1|

N̂ =
0 |0⟩ ⟨0| 1 |0⟩ ⟨1|
1 |1⟩ ⟨0| 0 |1⟩ ⟨1|

N̂ =

(
0 1
1 0

)

Matrix form of Operators

We can actually find out the matrix form of an operator from its outer
product form.

N̂ = |1⟩ ⟨0|+ |0⟩ ⟨1|

N̂ = 0 |0⟩ ⟨0|+ 1 |1⟩ ⟨0|+ 1 |0⟩ ⟨1|+ 0 |1⟩ ⟨1|

N̂ =
0 |0⟩ ⟨0| 1 |0⟩ ⟨1|
1 |1⟩ ⟨0| 0 |1⟩ ⟨1|

N̂ =

(
0 1
1 0

)

Matrix form of Operators

We can actually find out the matrix form of an operator from its outer
product form.

N̂ = |1⟩ ⟨0|+ |0⟩ ⟨1|

N̂ = 0 |0⟩ ⟨0|+ 1 |1⟩ ⟨0|+ 1 |0⟩ ⟨1|+ 0 |1⟩ ⟨1|

N̂ =
0 |0⟩ ⟨0| 1 |0⟩ ⟨1|
1 |1⟩ ⟨0| 0 |1⟩ ⟨1|

N̂ =

(
0 1
1 0

)

Matrix form of Operators

We can actually find out the matrix form of an operator from its outer
product form.

N̂ = |1⟩ ⟨0|+ |0⟩ ⟨1|

N̂ = 0 |0⟩ ⟨0|+ 1 |1⟩ ⟨0|+ 1 |0⟩ ⟨1|+ 0 |1⟩ ⟨1|

N̂ =
0 |0⟩ ⟨0| 1 |0⟩ ⟨1|
1 |1⟩ ⟨0| 0 |1⟩ ⟨1|

N̂ =

(
0 1
1 0

)

Multi-bit Operators

The only time an AND gate returns ON is when we have both inputs on.

Â |11⟩ = |1⟩

|11⟩ =
(

0
1

)
⊗

(
0
1

)
=


0
0
0
1



Â


0
0
0
1

 =

(
0
1

)

Multi-bit Operators

The Â operator has the form:

Â =

(
1 1 1 0
0 0 0 1

)

(
1 1 1 0
0 0 0 1

)
0
0
0
1

 =

(
0
1

)

Multi-bit Operators

and the only time an OR gate returns OFF is when we have both inputs
off.

Ô |00⟩ = |0⟩

|00⟩ =
(

1
0

)
⊗

(
1
0

)
=


1
0
0
0



Ô


1
0
0
0

 =

(
1
0

)

Multi-bit Operators

The 0̂ operator has the form:

0̂ =

(
1 0 0 0
0 1 1 1

)

(
1 0 0 0
0 1 1 1

)
1
0
0
0

 =

(
1
0

)

Logic Summary

We now have three(!) equivalent ways of thinking about computational
logic.

1 Circuits

2 States and Operators

3 Vectors and Matrices

These are the same tools we’ll use to understand quantum algorithms
later on.

Quantum Circuits

Components

Quantum circuits flow from left to right.

We use a wire to represent each qubit.

Wires cannot be split. (No FANOUT)

Boxes represent Operators.

Each qubit starts in state |0⟩ unless stated otherwise.

q0 U

q1

Components

Quantum circuits flow from left to right.

We use a wire to represent each qubit.

Wires cannot be split. (No FANOUT)

Boxes represent Operators.

Each qubit starts in state |0⟩ unless stated otherwise.

q0 U

q1

Components

Quantum circuits flow from left to right.

We use a wire to represent each qubit.

Wires cannot be split. (No FANOUT)

Boxes represent Operators.

Each qubit starts in state |0⟩ unless stated otherwise.

q0 U

q1

Components

Quantum circuits flow from left to right.

We use a wire to represent each qubit.

Wires cannot be split. (No FANOUT)

Boxes represent Operators.

Each qubit starts in state |0⟩ unless stated otherwise.

q0 U

q1

Components

Quantum circuits flow from left to right.

We use a wire to represent each qubit.

Wires cannot be split. (No FANOUT)

Boxes represent Operators.

Each qubit starts in state |0⟩ unless stated otherwise.

q0 U

q1

Pauli Matrices

σX =

(
0 1
1 0

)
σY =

(
0 −i
i 0

)
σZ =

(
1 0
0 −1

)

Pauli Matrices

Once we add in the identity I =
(

1 0
0 1

)
, we have a basis for the 2x2

matrices.

Exercise

Show that the set {σx ,σy ,σz , I} is a basis for the 2x2 matrices.

Pauli Matrices

Prove that the Pauli matrices are self-inverse.

σX =

(
0 1
1 0

)
σY =

(
0 −i
i 0

)
σZ =

(
1 0
0 −1

)

σXσX = σYσY = σZσZ = I

Pauli Gates

σX =

(
0 1
1 0

)
σY =

(
0 −i
i 0

)
σZ =

(
1 0
0 −1

)

X Y Z

Hadamard Gate

One of the most common gates is the Hadamard gate, which maximally
mixes the |0⟩ and |1⟩ states.

H = 1√
2

(
1 1
1 −1

)

so Ĥ |0⟩ = (|0⟩+ |1⟩)/
√

2 and Ĥ |1⟩ = (|0⟩− |1⟩)/
√

2.

Which puts the state half way between |0⟩ and |1⟩.

Visualising Gates
Let’s visualise the action of these one qubits gates using the Bloch
Sphere.

We can see that the Hadamard gate has moved the state so that it now
points along the x-axis of the bloch sphere.
This is the |+⟩ state, with the |−⟩ being at the opposite side of the
sphere.

Visualising Gates

We know that for a state |Ψ⟩ = α |0⟩+ β |1⟩ we expect:

X̂ |Ψ⟩ = α |1⟩+ β |0⟩

Lets visualise this on the bloch sphere:

Rotation Gates

We can turn these into rotations by an angle θ by mixing them with the
identity.

RX = cos θ
2 I− i sin θ

2σx

RX =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)

RX

Rotation Gates

RY = cos θ
2 I− i sin θ

2σy

RY =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)

RY

Rotation Gates

RZ = cos θ
2 I− i sin θ

2σz

RZ =

(
cos θ

2 − i sin θ
2 0

0 cos θ
2 + i sin θ

2

)

RZ

Two-qubit Gates

Controlled-NOT

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Swap Gate

We can swap the states of two qubits using three CNOT gates.

=

Measurement

The last basic component is the measurement symbol, which will
terminate the line.

|0⟩ H

|0⟩

IMBQ

Now we’re ready to run our first quantum circuits.
We’re going to do this using a Jupyter notebook

Metrics

The size of circuits is measured with two different numbers.

1 Depth - The maximum number of gates which have to be applied in
sequence.

2 Qubit Count - The maximum number of qubits in use at any one
time.

Depth

Depth is calculated as the maximum number of gates which must be
applied in sequence.

Qubit Count

Qubit count is the maximum number of physical qubits that have to be in
use at any one time.

|0⟩ H

|0⟩

|0⟩

Even though we have three qubits, the qubit count for this circuit is two.

Information & Communication

Information

What sort of things can we do with information?

Read

Edit

Delete

Move

Copy

Encryption / decryption

Information

What sort of things can we do with information?

Read

Edit

Delete

Move

Copy

Encryption / decryption

Readout

When we measure a state we get each possible result with some
probability.

We’re interested in knowing these probabilities.

So we have to make lots of measurements.

Which requires preparing the state each time!

Readout

When we measure a state we get each possible result with some
probability.

We’re interested in knowing these probabilities.

So we have to make lots of measurements.

Which requires preparing the state each time!

Readout

When we measure a state we get each possible result with some
probability.

We’re interested in knowing these probabilities.

So we have to make lots of measurements.

Which requires preparing the state each time!

Readout

When we measure a state we get each possible result with some
probability.

We’re interested in knowing these probabilities.

So we have to make lots of measurements.

Which requires preparing the state each time!

Information

What sort of things can we do with information?

Read

Edit

Delete

Move

Copy

Encryption / decryption

Information

What sort of things can we do with information?

Read

Edit

Delete

Move

Copy

Encryption / decryption

No Cloning Theorem

Theorem

There is no operation which can copy arbitrary quantum states.

We prove this by supposing it is possible.

|Ψ⟩ ⊗ |s⟩ U−→ |Ψ⟩ ⊗ |Ψ⟩ |Φ⟩ ⊗ |s⟩ U−→ |Φ⟩ ⊗ |Φ⟩

(⟨Ψ|⊗ ⟨s|)(|Φ⟩ ⊗ |s⟩) = (⟨Ψ|⊗ ⟨Ψ|)(|Φ⟩ ⊗ |Φ⟩)

⟨Ψ|Φ⟩ ⊗ ⟨s|s⟩ = ⟨Ψ|Φ⟩ ⊗ ⟨Ψ|Φ⟩

⟨Ψ|Φ⟩ = (⟨Ψ|Φ⟩)2

So either |Ψ⟩ and |Φ⟩ are the same state or they’re orthogonal!

No Cloning Theorem

Theorem

There is no operation which can copy arbitrary quantum states.

We prove this by supposing it is possible.

|Ψ⟩ ⊗ |s⟩ U−→ |Ψ⟩ ⊗ |Ψ⟩ |Φ⟩ ⊗ |s⟩ U−→ |Φ⟩ ⊗ |Φ⟩

(⟨Ψ|⊗ ⟨s|)(|Φ⟩ ⊗ |s⟩) = (⟨Ψ|⊗ ⟨Ψ|)(|Φ⟩ ⊗ |Φ⟩)

⟨Ψ|Φ⟩ ⊗ ⟨s|s⟩ = ⟨Ψ|Φ⟩ ⊗ ⟨Ψ|Φ⟩

⟨Ψ|Φ⟩ = (⟨Ψ|Φ⟩)2

So either |Ψ⟩ and |Φ⟩ are the same state or they’re orthogonal!

No Cloning Theorem

Theorem

There is no operation which can copy arbitrary quantum states.

We prove this by supposing it is possible.

|Ψ⟩ ⊗ |s⟩ U−→ |Ψ⟩ ⊗ |Ψ⟩ |Φ⟩ ⊗ |s⟩ U−→ |Φ⟩ ⊗ |Φ⟩

(⟨Ψ|⊗ ⟨s|)(|Φ⟩ ⊗ |s⟩) = (⟨Ψ|⊗ ⟨Ψ|)(|Φ⟩ ⊗ |Φ⟩)

⟨Ψ|Φ⟩ ⊗ ⟨s|s⟩ = ⟨Ψ|Φ⟩ ⊗ ⟨Ψ|Φ⟩

⟨Ψ|Φ⟩ = (⟨Ψ|Φ⟩)2

So either |Ψ⟩ and |Φ⟩ are the same state or they’re orthogonal!

No Cloning Theorem

Theorem

There is no operation which can copy arbitrary quantum states.

We prove this by supposing it is possible.

|Ψ⟩ ⊗ |s⟩ U−→ |Ψ⟩ ⊗ |Ψ⟩ |Φ⟩ ⊗ |s⟩ U−→ |Φ⟩ ⊗ |Φ⟩

(⟨Ψ|⊗ ⟨s|)(|Φ⟩ ⊗ |s⟩) = (⟨Ψ|⊗ ⟨Ψ|)(|Φ⟩ ⊗ |Φ⟩)

⟨Ψ|Φ⟩ ⊗ ⟨s|s⟩ = ⟨Ψ|Φ⟩ ⊗ ⟨Ψ|Φ⟩

⟨Ψ|Φ⟩ = (⟨Ψ|Φ⟩)2

So either |Ψ⟩ and |Φ⟩ are the same state or they’re orthogonal!

Information

What sort of things can we do with information?

Read

Edit

Delete

Move

Copy

Encryption / decryption

Information

What sort of things can we do with information?

Read

Edit

Delete

Move

Copy

Encryption / decryption

Private Key Distribution

Alice and Bob know they will soon have a message to send over the
internet, but it’s critical it stays private from their friend Eve.5

They could met up in person ahead of time, and agree on a secret key,
a string of random bits.

k = 00111000101100101 . . .

5They are planning surprise a party for Eve’s cat, who is alive and well.

Private Key Distribution

Alice and Bob know they will soon have a message to send over the
internet, but it’s critical it stays private from their friend Eve.5

They could met up in person ahead of time, and agree on a secret key,
a string of random bits.

k = 00111000101100101 . . .

5They are planning surprise a party for Eve’s cat, who is alive and well.

Private Key Distribution
When the time comes, Alice prepares her message in binary, then adds
the key to her own bits modulo 2.

01100010100111011

+

00111000101100101

↓
01011010001011110

Now her message is encrypted. Bob can decode it by doing the same
operation.6

Even if Eve intercepted it the message she couldn’t know what the
original values were without having the key.

6in this case addition and subtraction give the same result. Try it out.

Private Key Distribution
When the time comes, Alice prepares her message in binary, then adds
the key to her own bits modulo 2.

01100010100111011

+

00111000101100101

↓
01011010001011110

Now her message is encrypted. Bob can decode it by doing the same
operation.6

Even if Eve intercepted it the message she couldn’t know what the
original values were without having the key.

6in this case addition and subtraction give the same result. Try it out.

Quantum Key Distribution

This system works great provided that:

1 You know you’ll need to send the message

2 You can meet beforehand

3 No one steals either copy of the key

It would be much better to create a new key at the time of each message.

However, if Alice and Bob tried to send each other messages containing
the key before the message, Eve could listen in.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution
There is a way that Alice and Bob can create a key for themselves by
sending Qubits to each other.

1 Alice creates two strings of random bits, a and b.

2 She encodes the bits of a using the bits of b.

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

3 She then sends these to Bob.

4 Alice keeps b private for now.

5 Bob picks at random which basis to measure Alice’s encoded bits
in, and records his choices as c.

6 Alice publicly announces b.

7 Alice and Bob discard any bits for which b is different from c.

Quantum Key Distribution

Let’s see an example.

a = 0110011
b = 1011001

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

↓

|+⟩ |1⟩ |−⟩ |+⟩ |0⟩ |1⟩ |−⟩

c = 1110100
↓

|+⟩ |+⟩ |−⟩ |1⟩ |−⟩ |1⟩ |0⟩
↓

0 0 1 1 0 1 1

Quantum Key Distribution

Let’s see an example.

a = 0110011
b = 1011001

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

↓

|+⟩ |1⟩ |−⟩ |+⟩ |0⟩ |1⟩ |−⟩

c = 1110100

↓

|+⟩ |+⟩ |−⟩ |1⟩ |−⟩ |1⟩ |0⟩
↓

0 0 1 1 0 1 1

Quantum Key Distribution

Let’s see an example.

a = 0110011
b = 1011001

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

↓

|+⟩ |1⟩ |−⟩ |+⟩ |0⟩ |1⟩ |−⟩

c = 1110100
↓

|+⟩ |+⟩ |−⟩ |1⟩ |−⟩ |1⟩ |0⟩
↓

0 0 1 1 0 1 1

Quantum Key Distribution

Let’s see an example.

a = 0110011
b = 1011001

a=0 a=1
b=0 |0⟩ |1⟩
b=1 |+⟩ |−⟩

↓

|+⟩ |1⟩ |−⟩ |+⟩ |0⟩ |1⟩ |−⟩

c = 1110100
↓

|+⟩ |+⟩ |−⟩ |1⟩ |−⟩ |1⟩ |0⟩
↓

0 0 1 1 0 1 1

Checking for Eavesdropping
The No Cloning Theorem prevents Eve from copying the qubits Alice
sends to Bob.
Lets say she’d like to gain information about which state they share
without disturbing the state.

|ψ⟩ |u⟩ → |ψ⟩ |v⟩
|ϕ⟩ |u⟩ → |ϕ⟩ |v ′⟩

If Eve can make |v⟩ and |v ′⟩ different, then she can tell which state they
had!

⟨ψ|ϕ⟩ ⟨v |v ′⟩ = ⟨ψ|ϕ⟩ ⟨u|u⟩
⟨v |v ′⟩ = ⟨u|u⟩ = 1

Because ⟨v |v ′⟩ = 1, they must be the same state. Eve can’t learn about
Alice and Bob’s state without changing it.

Checking for Eavesdropping
The No Cloning Theorem prevents Eve from copying the qubits Alice
sends to Bob.
Lets say she’d like to gain information about which state they share
without disturbing the state.

|ψ⟩ |u⟩ → |ψ⟩ |v⟩
|ϕ⟩ |u⟩ → |ϕ⟩ |v ′⟩

If Eve can make |v⟩ and |v ′⟩ different, then she can tell which state they
had!

⟨ψ|ϕ⟩ ⟨v |v ′⟩ = ⟨ψ|ϕ⟩ ⟨u|u⟩
⟨v |v ′⟩ = ⟨u|u⟩ = 1

Because ⟨v |v ′⟩ = 1, they must be the same state. Eve can’t learn about
Alice and Bob’s state without changing it.

Checking for Eavesdropping
The No Cloning Theorem prevents Eve from copying the qubits Alice
sends to Bob.
Lets say she’d like to gain information about which state they share
without disturbing the state.

|ψ⟩ |u⟩ → |ψ⟩ |v⟩
|ϕ⟩ |u⟩ → |ϕ⟩ |v ′⟩

If Eve can make |v⟩ and |v ′⟩ different, then she can tell which state they
had!

⟨ψ|ϕ⟩ ⟨v |v ′⟩ = ⟨ψ|ϕ⟩ ⟨u|u⟩
⟨v |v ′⟩ = ⟨u|u⟩ = 1

Because ⟨v |v ′⟩ = 1, they must be the same state. Eve can’t learn about
Alice and Bob’s state without changing it.

Checking for Eavesdropping
The No Cloning Theorem prevents Eve from copying the qubits Alice
sends to Bob.
Lets say she’d like to gain information about which state they share
without disturbing the state.

|ψ⟩ |u⟩ → |ψ⟩ |v⟩
|ϕ⟩ |u⟩ → |ϕ⟩ |v ′⟩

If Eve can make |v⟩ and |v ′⟩ different, then she can tell which state they
had!

⟨ψ|ϕ⟩ ⟨v |v ′⟩ = ⟨ψ|ϕ⟩ ⟨u|u⟩
⟨v |v ′⟩ = ⟨u|u⟩ = 1

Because ⟨v |v ′⟩ = 1, they must be the same state. Eve can’t learn about
Alice and Bob’s state without changing it.

Checking for Eavesdropping

Alice and Bob can do a final check to see if someone is interfering with
their states.

They remove a portion of their key and share publicly to look for
discrepancies.

If there are too many differences, they know that someone was
intercepting the message.

Checking for Eavesdropping

Alice and Bob can do a final check to see if someone is interfering with
their states.

They remove a portion of their key and share publicly to look for
discrepancies.

If there are too many differences, they know that someone was
intercepting the message.

Checking for Eavesdropping

Alice and Bob can do a final check to see if someone is interfering with
their states.

They remove a portion of their key and share publicly to look for
discrepancies.

If there are too many differences, they know that someone was
intercepting the message.

Hardware

Required properties

The criteria for quantum information processing are:

Well defined two-level system

Ability to initialise the state

Long qubit coherence times7

Universal gate set

Measurement

7Compared to the time it takes to implement a gate.

Desirable properties

These are pretty loose criteria but in reality some designs are better than
others.

Low noise

Qubit connectivity

Easy to scale up

Reliable

Cheap to build and use

Hardware

Trapped Ions

Superconducting Qubits

Trapped Ions

Figure: IONQ

Trapped Ions

Figure: Trapped Ions - University of Oxford

Trapped Ions

Figure: IONQ

Trapped Ions: Connectivity
Qubits are defined using two energy levels of the ion.
We can manipulate the energy of the Ion by using a laser with a
resonant frequency.

Figure: Bruzewicz et al 2019

Trapped Ions: Gates

The GPi and GPi2 gates are used for single qubit operations.

GPi =
(

0 e−iϕ

e−iϕ 0

)
GPi2 = 1√

2

(
1 −ie−iϕ

−ie−iϕ 1

)

The Mølmer-Sørenson gate is used for entangling qubits.

−i√
2


i 0 0 e−i(ϕ0+ϕ1)

0 i e−i(ϕ0−ϕ1) 0
0 e−i(ϕ0−ϕ1) i 0

e−i(ϕ0+ϕ1) 0 0 i



Hardware

Trapped Ions

Superconducting Qubits

Superconducting Qubits

Figure: Rigetti Superconducting Qubits

Superconducting Qubits

Superconducting Qubits: Gates

The Rx and Ry gates are used for single qubit operations.

RX =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
RY =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)

The Controlled-Z CZ gate is used for entangling qubits.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



QPE
The Quantum Phase Estimator is a way of working out the energy of
each state of a system.

Iterative QPE

We can reduce the number of qubits we need by only using one extra at
a time.

However, the circuit depth increases.

NISQ

Current quantum computers are very limited in qubit count and depth.

We therefore need to design algorithms for the Noisy Intermidate Small
Quantum Computers.

Most algorithm research conducted today is focused on NISQ
applications.

VQE

The Variational Quantum Eigensolver is a way to get the lowest energy
state |ψ0⟩ of a system |Ψ⟩.

1 Initial state input |Φ⟩

2 State evolves according to parameterised circuit Û(α⃗) |Φ⟩ = |Ψ(α⃗)⟩
3 Measure the energy of the state E = ⟨Ψ(α)| Ĥ |Ψ(α)⟩
4 Update the parameters α⃗

5 Repeat Steps 1-3 until we find the minimum energy.

Once we’ve stopped the procedure, we know that |Ψ0⟩ = |Ψ(α)⟩

VQE
The Variational Quantum Eigensolver is a way to get the lowest energy
state |ψ0⟩ of a system |Ψ⟩.

1 Initial state input |Φ⟩
2 State evolves according to parameterised circuit Û(α⃗) |Φ⟩ = |Ψ(α⃗)⟩

3 Measure the energy of the state E = ⟨Ψ(α)| Ĥ |Ψ(α)⟩
4 Update the parameters α⃗
5 Repeat Steps 1-3 until we find the minimum energy.

Once we’ve stopped the procedure, we know that |Ψ0⟩ = |Ψ(α)⟩

VQE

The Variational Quantum Eigensolver is a way to get the lowest energy
state |ψ0⟩ of a system |Ψ⟩.

1 Initial state input |Φ⟩
2 State evolves according to parameterised circuit Û(α⃗) |Φ⟩ = |Ψ(α⃗)⟩
3 Measure the energy of the state E = ⟨Ψ(α)| Ĥ |Ψ(α)⟩

4 Update the parameters α⃗

5 Repeat Steps 1-3 until we find the minimum energy.

Once we’ve stopped the procedure, we know that |Ψ0⟩ = |Ψ(α)⟩

Postulates of QM

Postulate 1

Any isolated physical system is completely described by a state vector.

This is true not just for qubits, but for any size of quantum system.

|Ψ⟩ = c0 |ψ0⟩+ c1 |ψ1⟩+ · · ·+ cn |ψn⟩

Where {c0, c1, . . . , cn} ∈ C

|c0|
2 + |c1|

2 + · · ·+ |cn|
2 = 1

Variational Principle

The variational principal says that we can find the ground state |Ψ0⟩ by
finding a minimum in the energy of parameterised states.

E = ⟨Ψ(α)| Ĥ |Ψ(α)⟩

E0 ⩽ ⟨Ψ(α)| Ĥ |Ψ(α)⟩

|Ψ(α)⟩ is the ground state |Ψ0⟩ when we find a minimum in E!

VQE

The Variational Quantum Eigensolver is a way to get the lowest energy
state |ψ0⟩ of a system |Ψ⟩.

1 Initial state input |Φ⟩
2 State evolves according to parameterised circuit Û(α⃗) |Φ⟩ = |Ψ(α⃗)⟩
3 Measure the energy of the state E = ⟨Ψ(α)| Ĥ |Ψ(α)⟩
4 Update the parameters α⃗

5 Repeat Steps 1-3 until we find the minimum energy.

Once we’ve stopped the procedure, we know that |Ψ0⟩ = |Ψ(α)⟩

VQE

The Variational Quantum Eigensolver is a way to get the lowest energy
state |ψ0⟩ of a system |Ψ⟩.

1 Initial state input |Φ⟩
2 State evolves according to parameterised circuit Û(α⃗) |Φ⟩ = |Ψ(α⃗)⟩
3 Measure the energy of the state E = ⟨Ψ(α)| Ĥ |Ψ(α)⟩
4 Update the parameters α⃗

5 Repeat Steps 1-3 until we find the minimum energy.

Once we’ve stopped the procedure, we know that |Ψ0⟩ = |Ψ(α)⟩

VQE Pros & Cons

Reduces circuit depth.

Doesn’t need any ancilla qubits

Classical methods for initial
state

Finds real E0

Resistant to noise

Need to run lots of circuits

Might not be able to update
parameters

Global or local minimum?

VQE Pros & Cons

Reduces circuit depth.

Doesn’t need any ancilla qubits

Classical methods for initial
state

Finds real E0

Resistant to noise

Need to run lots of circuits

Might not be able to update
parameters

Global or local minimum?

Compilers

Why we need compilers

We can write circuits using lots of languages.

Real devices are limited in qubit count and connectivity.

We want to run algorithms efficiently.

Why we need compilers

We can write circuits using lots of languages.

Real devices are limited in qubit count and connectivity.

We want to run algorithms efficiently.

Why we need compilers

We can write circuits using lots of languages.

Real devices are limited in qubit count and connectivity.

We want to run algorithms efficiently.

Why we need compilers

We can write circuits using lots of languages.

Real devices are limited in qubit count and connectivity.

We want to run algorithms efficiently.

Compiler Flow

Redundant Gates
We might inadvertently write a circuit with gates that cancel out.
Compilers remove these using templates.

Intermediate Representation

Programming languages output
circuits in a standard format called
an Intermediate Representation.

Intermediate Representation

Native Gates

Trapped Ion (IONQ)

GPi

GPi2

Molmer-Sorensen

Super Conductor (Rigetti)

Rx

Ry

CZ

Compiler Flow

Equivalent Circuits

Equivalent Circuits

Connectivity

Figure: Qubit map for IBMQ Manilla

Figure: Qubit map for IBMQ Quito

Quality

Figure: Qubit map for IBMQ Lagos Figure: Qubit map for IBMQ Perth

Compiler Flow

Crosstalk

Crosstalk occurs when we apply two gates at once, causing the signals
to interfere.

What we didn’t cover

Adiabatic Quantum Computing

Non-reversible computing

Braiding

Error Correction

Algorithms

Further Reading

IMBQ Textbook

Feynman Lectures

Neilsen & Chuang

	Why bother?
	Computational Logic
	Quantum States
	Quantum Circuits
	Information & Communication
	Hardware
	Compilers
	What we didn't cover

