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I. LOCALISATION

In this section, we describe how to generate a set of
localized molecular orbitals (LMOs) from the cannoncial
molecular orbitals (CMOs) of a global DFT calculation.
This step is required in order to define each subsystem
according to a certain metric discussed in further detail
here.

We employ two methods to generate a set of localised
molecular orbitals: the intrinsic bond orbitals (IBO) [1]
and subsystem Projected AO DEcomposition (SPADE)
[2]. Other methods can be used, such as Pipek-Mezey
(PM) [3], Foster-Boys (FB) [4], Edmiston-Ruedenberg
(ER)[5] and fourth moment (FM) localization [6].

A. SPADE

SPADE is designed to localise electrons to the general
region of an active site and environment [7]. This avoids
the need for a threshold used to define the active and
environment systems, as needed by the PM, FB, ER,
FM and IBO approaches. The next section goes into
more details about this.

We first restrict the C matrix to only the occupied
molecular orbitals {¢oc.} C {¥}. As our aim is to lo-
calise electrons to one region; virtual orbitals need not
be localised. The remaining MOs are made mutually or-
thogonal by rotation with the matrix defining the overlap
of atomic orbitals S[7]:

C =8%°C,. (1)

We wish to find the relative contribution of the active
region AOs to the occupied MOs, so we now restrict
the matrix to only contributions from AOs associated
to atoms in the active region C4. By making a singular
value decomposition of this matrix|[7]:

Ca=U, 34V}, (2)
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we can determine a basis which localises the electrons of
the active region. The column vectors of V 4 are identical
to the eigenvectors of CAI CZ  [7]. A new set of orbitals
are then obtained through a rotation of the original MOs
Coee as:

CSPADE — COCCVA7 (3)

occ

where C5PAPE are the SPADE orbitals. The singular
values {o} of ¥4 allow appropriate partitioning of the
orbital subspaces into active and environment subsystem
[7]. The largest difference between successive singular
values gives the partition of the SPADE MOs. Formally

we write this as:

M. = max{o; — oip1}, 4)
here m?.,. is the index i where the largest difference oc-
curs. The SPADE MOs (columns of CSPAPE) up to

this index are the active MOs and the remaining or-
bitals (other columns of C5EAPE) are the environment
orbitals.

B. Intrinsic Bonding Orbitals

Intrinsic Bonding Orbitals (IBOs) are constructed as a
linear combination of intrinsic atomic orbitals (IAOs),
where the the number of atoms the orbital charge is
spread over is minimized.

Taking the canonical molecular orbitals defined as:

K
[v:) = Z Cjiloj) (5)

where |¢;) € B; are basis functions from a basis set By.
A key problem with this form is each MO |¢;) is hard
to interpret, as each atomic orbital’s (AO) basis func-
tions |¢;) cannot be associated with a given atom [1].
Normally MOs are highly delocalized and each |¢;) will
contribute where it is needed most. Thus, we would like
to expand the MOs over another minimal basis By of free-
atom atomic orbitals for each atom, which we write as

{‘q/;>} € Bs. This would make the wavefunction easy to



interpret, but would be inaccurate and even incorrect, as
free-atom AQOs contain no polarization due to the molec-
ular environment. The TAO method aims to combine the
best properties of these.

First, a molecular SCF wavefunction |®) (a single
Slater determinant) is calculated that defines a set of
molecular orbitals (MOs) [¢;). Then a set of polarized
atomic orbitals {|¢U4?)} ¢ B, are formed that can
express |®)s in the occupied MOs |¢);). To do this, pro-
jectors onto the occupied and virtual MOs are defined:
P = %" |i) (¥ and Q = I — P respectively [8]. The
atomic orbital (AO) projectors onto the bases By and Bs
are also defined as [1]:

P2 = Z |¢>z S;jl <¢|j ’ (63‘)
\¢>i,|¢>j€B1
Pa = Z |6) St (@1, - (6b)

|¢>ks|¢>1632
Here Si_j1 and S,;ll are the inverse overlap matrices in the

bases By and Bs. The set of depolarized MOs is then
given by [1, 8]:

{

$i)} = (P1aPou [0}, (7)

These depolarized molecular orbitals are then used to

define the projectors: P= D> 1/;Z> <1ﬁl and Q —I1-P.
The TAOs are finally given by:
[6149)) = (PP + QQ)P12|3) ®)

The TAO basis is then orthonormalized [1, 8]. Overall,
each TAQ is obtained by a simple set of matrix operations.
The utility of TAOs stems from the fact that they are
directly associated with atoms and can be used to define
atomic properties like partial charges and are basis set
independent, unlike the Pipek-Mezey approach.

Often we want to know about molecular bonding
rather than atomic properties. Knizia showed that by
combining TAOs with a localization in the spirit of Pipek-
Mezey, one can obtain intrinsic bonding orbitals (IBOs).
As discussed in the main text, a Slater determinant |P)
is invariant to unitary rotations |1/)1-LMO> = |¢;) U, we
can thus define the IBOs by maximizing [1]:

Natoms Noce

Lipo= Y > [na@i)* (9)

A %

with respect to U. Here n4(i) is the number of electrons
from FMO located on the IAOs {‘¢(1AO)>} of atom A.
Explicitly, we write this as [1]:

nai) =2 Y (0 [140)) (4040)| yivoy
|¢(IAO)>€A
(10)
This construction minimizes the number of atoms upon
which an orbital is centred [1].

In order to assign these localized molecular orbitals
(CEMOY to the active and environment subsystems we
calculate the percentage of the i, LMO over the active
atoms as:

ZVEact C?y
K
ZV:1 CZZV

where v € act are the atomic orbital indices for the atoms
defined in the active region. The denominator includes
all the AOs of the i-th MO. This is the approach given
in Equation 10 in the work of Koch et al.[9]. Any p?¢t >
95% we associate to the active subsystem.

Our code on GitHub uses this metric for the other lo-
calization strategies suppored by PySCF. The code gen-
erates a localized C matrix, which can then be used in
conjunction with Equation 11.

pi7(C) = ; (11)

II. EMBEDDED SELF-CONSISTENT FIELD
METHODOLOGY

In this section we summarise how the embedded self-
consistent field calculations are performed for the p-shift
and Huzinaga methods. We consider restricted Hartree-
Fock (RHF) calculations; extensions to the unrestricted
case follow straightforwardly.

A. p-shift RHF

To perform the p-shifted RHF calculation, only the
core Hamiltonian is modified (Equation 16b in the main
text), by adding Ve, 4+ Pory to it. The g(y** 4+ ")
term is obtained from the global DFT calculation. The
g(7%¢") potential energy matrix is calculated in the same
way, except the density matrix is set to be that of the
active system only. The p-shift projector can then be
defined using Equation 17 in the main text.

The standard RHF algorithm can then be run, where
the only difference is that the standard core Hamiltonian
has been modified to be hg,,p.

B. Huzinaga RHF

The Huzinaga RHF calculation is slightly more in-
volved than the p-shifted method. At each self-consistent
field loop, when the new Fock matrix is defined, the Huzi-

naga projection operator P¢"% must be built according to



Equation 20 in the main text. We reiterate this step uses
the current Fock matrix in the self consistent field loop.
The embedded Fock matrix is then constructed accord-
ing to equation 15 of the main text, where the potential
energy matrix V2% (Equation 16a in the main text) is
defined in the same manor as the p-shift RHF method.
Given this embedded Fock matrix, F¢<!, C = SCe can be
solved via standard SCF approaches. This generates a
set of new MO coefficients C that are used to construct
the new Fock matrix. This process is repeated until the
energy converges as usual in an SCF calculation.

III. ACTIVE ATOM SELECTION

As the number of active atoms is configurable with this
method, we demonstrate the effect of altering this param-
eter using cyclopentane. Figure 1 shows the change in
calculated ground state energy, qubit count and number
of terms in the Jordan-Wigner encoded qubit Hamilto-
nian.

IV. MOLECULAR GROUND STATE ENERGY

Our method provides flexibility to select a localisation
method. In addition to the result displayed in Figure
2, which were calculated using the SPADE projection
method, we present results for the same molecules us-
ing the Intrinsic Bonding Orbitals localisation method in
Figure 2. Numerical values for these results are given in
Table I for reference values, and Tables II and III for our
calculated results.

[Molecule [eprr [Q] [H] |
N-methylmethanamine || 0.5733|44 | 338971
acetaldehyde 0.569 (38182702
acetonitrile 0.485 |36|136067
ethanamine 0.573 |44(329283
ethanol 0.609 |42]283020
fluoroethane 0.637 |40(217385
formamide 0.619 |36|138235

TABLE I: Full-system reference values for embedding
calculations of small molecules, as shown in Figures 2
and 2. eppr gives the difference between full-system
RKS DFT, using the B3LYP functional, and CCSD(T).
Q and |H| give respectively the number of qubits and
terms in the Jordan-Wigner encoded qubit Hamiltonian
of the full system. All energies reported in Hartree (Ha).

V. STRONG CORRELATION

We provide the numerical details of our strongly cor-
related HoO study in this section, where SPADE local-
ization has been used. These results form Figure 3 in the

Embeddings of Cyclopentane
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FIG. 1: Results of cyclopentane embedding, with
increasing numbers of carbon atoms assigned to the
active region. For each, IBO localisation was used;

results for the u-shift and Huzinaga projector are

overlapping and indistinguishable. Different methods do
not give noticeably distinct results. (a) Ground state
energy. (b) Number of occupied molecular orbitals
assigned to the active region. (c) Number of qubits in
output Hamiltonian. (d) Number of terms in the
Jordan-Wigner encoded qubit Hamiltonian.

main text. We also include results for IBO localization.
The raw data for all these results is provided in ancillary
files with this text.

For the H2O projection based embedding calculations,
at different molecular geometries, we considered two dif-
ferent active regions. One had the atoms in the fixed OH
bond set active and the other had the atoms in the chang-
ing OH bond set active. The structure for HoO with an
OH bond length of 0.4 A4 is given in Table IV. The other
geometries can be generated from this structure. Tables
V and VI summarise the numerical results for the differ-
ent active systems where SPADE localization has been
used. Tables VII and VIII give the numerical results for
the different active systems when IBO localization was
used and Figure 3 provides a graphical summary of these
results.

For the FCI-in-DF'T results given in Figure 3, we note
that the error in the embedded calculation is actually
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FIG. 2: Results for embedding of small molecules using
the IBO localisation method. (a) Ground state energies
error for small molecules, with full-system DFT energy
error as reference, p-shift CCSD-in-DFT embedding
energy in orange and Huzinaga CCSD-in-DFT
embedding in grey. All error values are calculated with
respect to whole system CCSD(T) energies. (b) The
number of qubits required to describe the embedded
FCI-in-DFT Hamiltonians, with reference showing the
number required for the full system FCI Hamiltonian.
(¢) The number of terms in the Jordan-Wigner encoded
FCIL-in-DFT qubit Hamiltonian for each molecule.
Again the reference gives the number needed for the full
system FCI Hamiltonian.

higher than the global DFT calculation at an OH bond
length of 4.0 A. There is also a significant difference in
the number of qubits and Hamiltonian terms at OH bond
lengths of 0.4, 0.6 and 4.0 A. The variation, compared
with the SPADE results (Figure 3 in the main text), is
mainly due to the localization method giving different
numbers of active MOs. We repeated the IBO calcula-
tion using a different active region threshold (minimum
setting of 90%) and obtained similar results, as the num-
ber of active MOs then matched that of the SPADE cal-
culation. Figure 4 summarises this result.
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Molecule

|| ehus

€u ‘Qhuz QH ‘ |Heh?’trl‘Li| ‘Hél;nb‘ ‘
N-methylmethanamine [|0.491 0.494| 24 24 | 29701 29737
acetaldehyde 0.099 0.178| 30 30| 70118 69554
acetonitrile 0.462 0.462| 18 18| 9232 9016
ethanamine 0.394 0.399| 26 26| 38716 39924
ethanol 0.340 0.350| 26 26 | 40948 41060
fluoroethane 0.299 0.312| 26 26| 35020 38180
formamide 0.043 0.109| 30 3062434 61914

TABLE II: Numerical values of the calculations shown

in Figure 2. For each calculation the energy difference

between CCSD(T)-in-DFT embedding and full system
CCSD(T), e, is given. The number of qubits @ and

number of terms in the output Jordan-Wigner encoded
qubit Hamiltonian |H| are given. Results for IBO

localisation are shown, with results for SPADE in Table

IIT reference values using the full system given in Table

1. All energies reported in Hartree (Ha).

Molecule

H €huz €u ‘Qhuz Qu ‘ |H571:£| |Hgmb| ‘
N-methylmethanamine||0.135 0.169| 36 36 |152223 152415
acetaldehyde 0.098 0.176| 30 30| 70474 69982
acetonitrile 0.403 0.409| 20 20| 13439 13111
ethanamine 0.136 0.169| 36 36 |145067 149819
ethanol 0.132 0.169| 34 34 /120928 121036
fluoroethane 0.136 0.170| 32 32| 85781 89377
formamide 0.045 0.110f 30 30| 62366 61958

TABLE III: Numerical values of the calculations shown

in Figure 2. For each calculation the energy difference

between CCSD(T)-in-DFT embedding and full system
CCSD(T), ¢, is given. The number of qubits @ and

number of terms in the output Jordan-Wigner encoded
qubit Hamiltonian |H| are given. Results for SPADE

localisation are shown, with results for IBO in Table II
reference values using the full system given in Table I.

All energies reported in Hartree (Ha).

]atomH b'e y Z [
H 0.3751747 0.0000000 0.1387225
(0] 0.0000000 0.0000000 0.0000000
H {{-0.7493682 0.0000000 0.2770822

TABLE IV: Cartesian coordinates of atoms in HoO for
the structure with an OH bond length of 0.4 A defined
from the first H and O atoms in this Table. The other
structures (different OH bond lengths) were generated
from this file by changing the position of the first H
atom. Note the H-O-H angle remained fixed.
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OH length Ezgrlgt;al E%;b;l El’«%iin-DFT Ef«fcl.in.DFT ‘ |Hfull| IHI}?%f—in—DFT‘ ‘H5c1.in_D1«*T| ‘Q%locbfal %‘%iin—DFT QﬁCI_in-DFT ‘ # active MOS‘
0.400000 |-72.981056 -73.259936 -72.988008 -72.988009 | 2110 1079 1079 14 12 12 4
0.600000 |-74.499220 -74.773419 -74.508545 -74.508545 | 2110 1079 1079 14 12 12 4
0.798954 |-74.851089 -75.122053 -74.864002 -74.864002 | 1086 1079 1079 14 12 12 4
1.000000 |-74.900658 -75.170068 -74.918225 -74.918226 | 2110 1079 1079 14 12 12 4
1.200000 |-74.867498 -75.134418 -74.890912 -74.890913 | 2110 1079 1079 14 12 12 4
1.500000 |-74.807539 -75.057384 -74.840739 -74.840739 | 2110 1079 1079 14 12 12 4
2.000000 |-74.776263 -74.962535 -74.816902 -74.816902 | 2110 1079 1079 14 12 12 4
3.000000 |-74.771687 -74.890577 -74.820223 -74.820224 | 2530 1327 1327 14 12 12 4
4.000000 |-74.771719 -74.876129 -74.820261 -74.820262 | 3346 1819 1819 14 12 12 4
5.000000 |-74.771718 -74.872116 -74.820410 -74.820411 | 3054 1799 1799 14 12 12 4

TABLE V: Numerical values of the calculations shown in Figure 3 for the case when the changing OH bond is set as

the active region and SPADE localization has been used. For each calculation the absolute energy is reported (each

Hamiltonian was diagonalized to give the exact ground state). The number of qubits @ and number of terms in the
output Jordan-Wigner encoded qubit Hamiltonian |H| are given. All energies reported in Hartree (Ha).

‘OH length E%}Z}}al Egth)«“l?l ER& in-pPT EfoLinprT ‘ [H puur| |HI’«‘lgiiIkDFT‘ |Hfcrin-prT] ‘Qi“kz)jblal BCiin-DFT QFCLin-DFT ‘ # active MOS‘
0.400000 |-72.981056 -73.259936 -72.887822 -72.887827 | 2110 1079 1079 14 12 12 4
0.600000 [-74.499220 -74.773419 -74.473689 -74.473691 | 2110 1079 1079 14 12 12 4
0.798954 |-74.851089 -75.122053 -74.864002 -74.864002 | 1086 1079 1079 14 12 12 4
1.000000 |-74.900658 -75.170068 -74.936101 -74.936101 | 2110 1079 1079 14 12 12 4
1.200000 |-74.867498 -75.134418 -74.914336 -74.914336 | 2110 1079 1079 14 12 12 4
1.500000 |-74.807539 -75.057384 -74.847328 -74.847328 | 2110 1079 1079 14 12 12 4
2.000000 |-74.776263 -74.962535 -74.755506 -74.755506 | 2110 1079 1079 14 12 12 4
3.000000 |-74.771692 -74.890579 -74.683921 -74.683921 | 2406 1203 1327 14 12 12 4
4.000000 |-74.771719 -74.876127 -74.669427 -74.669427 | 2598 1083 1119 14 12 12 4
5.000000 |-74.771718 -74.872381 -74.665626 -74.665626 | 3046 1759 1799 14 12 12 4

TABLE VI: Numerical values of the calculations shown in Figure 3 for the case when the fixed OH bond is set as
the active region and SPADE localization has been used. For each calculation the absolute energy is reported (each
Hamiltonian was diagonalized to give the exact ground state). The number of qubits @ and number of terms in the

output Jordan-Wigner encoded qubit Hamiltonian |H| are given. All energies reported in Hartree (Ha).

OH length EIgrlgt}al E%%bﬁl El’«%iin-DFT E;CI-in-DFT ‘ |Hfull| IHI}?%iin—DFT‘ ‘H#CI-in-DFTl ‘Q%locblal g?:iin-DFT QﬁcI_in.DFT ‘ # active MOs
0.400000 |-72.981056 -73.259936 -72.928542 -72.923051 | 2110 492 492 14 10 10 3
0.600000 |-74.499220 -74.773419 -74.484545 -74.484551 | 2110 492 492 14 10 10 3
0.798954 |-74.851089 -75.122053 -74.852614 -74.852616 | 1086 1079 1079 14 12 12 4
1.000000 |-74.900658 -75.170068 -74.899540 -74.899543 | 2110 1079 1079 14 12 12 4
1.200000 |-74.867498 -75.134418 -74.868096 -74.868099 | 2110 1079 1079 14 12 12 4
1.500000 |-74.807539 -75.057384 -74.819776 -74.819778 | 2110 1079 1079 14 12 12 4
2.000000 |-74.776263 -74.962535 -74.798952 -74.798954 | 2110 1079 1079 14 12 12 4
3.000000 |-74.771692 -74.890578 -74.804924 -74.804927 | 2238 1379 1383 14 12 12 4
4.000000 |[-74.771719 -74.873986 -74.470749 -74.470821 | 2342 876 876 14 10 10 3
5.000000 |-74.771718 -74.872112 -74.805202 -74.805204 | 3210 1779 1775 14 12 12 4

TABLE VII: Numerical values of the calculations when the changing OH bond is set as the active region and IBO
localization (95% threshold)is been used. For each calculation the absolute energy is reported (each Hamiltonian
was diagonalized to give the exact ground state). The number of qubits @ and number of terms in the output
Jordan-Wigner encoded qubit Hamiltonian |H| are given. All energies reported in Hartree (Ha).



7

OH length Ezgrlgt;al E%;b;l El’«%iin-DFT Ef«fcl.in.DFT ‘ |Hfull| IHI}?%f—in—DFT‘ ‘H5c1.in_D1«*T| ‘Q%locbfal Ql}-%im-DFT QﬁCI_in-DFT‘# active MOS‘
0.400000 |-72.981056 -73.259936 -72.928542 -72.923051 | 2110 492 492 14 10 10 3
0.600000 |-74.499220 -74.773419 -74.484545 -74.484551 | 2110 492 492 14 10 10 3
0.798954 |-74.851089 -75.122053 -74.852614 -74.852616 | 1086 1079 1079 14 12 12 4
1.000000 |-74.900658 -75.170068 -74.899540 -74.899543 | 2110 1079 1079 14 12 12 4
1.200000 |-74.867498 -75.134418 -74.868096 -74.868099 | 2110 1079 1079 14 12 12 4
1.500000 |-74.807539 -75.057384 -74.819776 -74.819778 | 2110 1079 1079 14 12 12 4
2.000000 |-74.776263 -74.962535 -74.798952 -74.798954 | 2110 1079 1079 14 12 12 4
3.000000 |-74.771692 -74.890578 -74.804924 -74.804927 | 2238 1379 1383 14 12 12 4
4.000000 |[-74.771719 -74.873986 -74.470749 -74.470821 | 2342 876 876 14 10 10 3
5.000000 |-74.771718 -74.872112 -74.805202 -74.805204 | 3210 1779 1775 14 12 12 4

TABLE VIII: Numerical values of the calculations when the fixed OH bond is set as the active region and IBO
localization (95% threshold) is been used. For each calculation the absolute energy is reported (each Hamiltonian
was diagonalized to give the exact ground state). The number of qubits @ and number of terms in the output
Jordan-Wigner encoded qubit Hamiltonian |H| are given. All energies reported in Hartree (Ha).
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FIG. 3: Potential energy curve for H,O, with changing OH bond length. Active stretch result has the changing OH
bond as the active region and environment stretch result has the fixed OH bond selected as the active region. These
results use IBO localization (95% threshold). For each data set the full problem is reduced from 14 to 12 qubits,
with the number of active MOs being three or four in all cases. The top plot reports the log base 10 error with
respect to the exact FCI ground state energy (Ercr) of the whole system, where |AE| = |Eeyp, — Ercy|. Here Eeyy
is obtained from an FCI-in-DFT calculation. The bottom plot reports the number of terms in each Jordan-Wigner
encoded qubit Hamiltonian. The blue result gives the size of the full system Hamiltonian, the orange and yellow
results are for p-shifted embedded Hamiltonians while the grey and black results are for the Huzinaga embedded
Hamiltonians. Numerical details are provided in Tables VII and VIII.
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FIG. 4: Potential energy curve for HoO, with changing OH bond length. Active stretch result has the changing OH

bond as the active region and environment stretch result has the fixed OH bond selected as the active region. results

use IBO localization (see raw data for threshold values - lowest setting was 90%). For each data set the full problem

is reduced from 14 to 12 qubits, with the number of active MOs being four in all cases. The top plot reports the log

base 10 error with respect to the exact FCI ground state energy (Ercr) of the whole system, where

|AE| = |Eexp — Erci|. Here E.,), is obtained from an FCI-in-DFT calculation. The bottom plot reports the number
of terms in each Jordan-Wigner encoded qubit Hamiltonian. The blue result gives the size of the full system
Hamiltonian, the orange and yellow results are for u-shifted embedded Hamiltonians while the grey and black
results are for the Huzinaga embedded Hamiltonians. Numerical details are provided in the supplied raw data.



