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Owing to the computational complexity of electronic structure algorithms running on classical
digital computers, the range of molecular systems amenable to simulation remains tightly circum-
scribed even after many decades of work. Many believe quantum computers will transcend such
limitations although in the current era the size and noise of these devices militates against signif-
icant progress. Here we describe a chemically intuitive approach that permits a subdomain of a
molecule’s electronic structure to be calculated accurately on a quantum device, while the rest of
the molecule is described at a lower level of accuracy using density functional theory running on
a classical computer. We demonstrate that this approach produces improved results for molecules
that cannot be simulated fully on current quantum computers but which can be resolved classically
at a cheaper level of approximation. The algorithm is tunable, so that the size of the quantum
simulation can be adjusted to run on available quantum resources. Therefore, as quantum devices
become larger, this method will enable increasingly large subdomains to be studied accurately.

I. INTRODUCTION

Quantum computing is anticipated to enable accurate
simulation of chemical systems beyond the capabilities
of classical methods. Whether this aim will be achieved
with so-called Noisy Intermediate-scale Quantum (NISQ)
processors is still to be seen[1-4]. While devices are im-
proving rapidly, NISQ applications also require algorith-
mic tools to mitigate noise and reduce required qubit
counts.

Embedding procedures work by first partitioning a
system and then applying differing levels of theory to
each region. An accurate but computationally expensive
method is applied to a small active region[5, 6]. The sur-
rounding environment is handled with a more efficient
but approximate method. This allows some of the phys-
ically relevant detail to be captured while avoiding the
computational cost of accurately simulating the entire
system. However, even for fairly small active regions, ex-
act classical simulation using the Full Configuration In-
teraction (FCI) method quickly becomes unfeasible due
problem scaling exponentially with system size [7]. For
such problems, the number of Slater determinants scales
as (%), for N electrons and M orbitals [4].

The current “gold standard” in conventional quantum
chemistry is coupled cluster (CC) theory, which offers
a good accuracy-to-cost ratio and reduces this factorial
complexity [8, 9]. The CC single double (CCSD) method
scales as O(M®) [10]. The CCSD(T), which treats the
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triple excitations pertubatively, scales as O(M”) in time
[4]. This still imposes practical limitations on system
size while imperfectly approximating the effects of corre-
lation [11]. Therefore, classical embedding methods still
inevitably inherit the shortcomings of such methods, even
within a smaller active region. In short, accurately sim-
ulating quantum effects at large scale remains elusive.

Quantum computers can efficiently represent the state
of general quantum systems and provide a practical way
to perform quantum chemistry simulations in polynomial
time [12]; however, this approach will only be possible
in the fault tolerant regime, as it requires the quan-
tum phase estimation (QPE) algorithm [13] which cannot
be implemented on current NISQ quantum computers
[14, 15]. There are however, still open questions regard-
ing the advantage of using quantum computers for chem-
istry simulations [16]. Quantum algorithms designed for
NISQ devices, such as the variational quantum eigen-
solver (VQE) [17], allow quantum systems to be studied
using present day hardware; however, this is limited by
the current quality and quantity of qubits. To date, the
largest chemical VQE simulations are a 12 qubit study of
a Hjo chain [18] and a 12 qubit simulation of Li;O [19].

By embedding a wave function simulation calculated
on a quantum computer into a larger classical simula-
tion, we can mitigate some of the shortfalls of classi-
cal hardware in describing quantum systems, while re-
quiring fewer qubits and shorter quantum circuits than
full-system quantum simulation. This will allow sys-
tems normally too large to study at the wave function
level to be modelled via a multi-scale approach. In this
way, embedding can serve as an algorithmic tool to mit-
igate the shortcomings of quantum and classical proces-
sors, thereby providing novel results. Additionally, as
embedding methods may utilise fault-tolerant quantum



simulation methods, they will continue to facilitate the
study of systems larger than would otherwise be possible.
Hybrid embedding methods published to date include
wave function-in-DFT [20, 21|, Density Matrix Embed-
ding Theory (DMET) [22-24] and Dynamical Mean-Field
Theory (DMFT) [25-27] approaches.

We reformulate the projection-based embedding
method, which enables the application of quantum algo-
rithms to molecules of arbitrary size while consistently
improving on the results of full-system Density Func-
tional Theory (DFT). This method outputs a Hamilto-
nian which can be solved using any suitable NISQ or
fault-tolerant quantum algorithm, thus augmenting the
usefulness of quantum processors in general. We antic-
ipate that by targeting quantum processors at regions
with strong correlation, hybrid embedding will enable
novel results. This concept has been utilized in other
works, where a smaller embedded qubit Hamiltonian
is produced and solved; however, the underlying the-
ory and assumptions are different for each hybrid model
[20, 28, 29]. The method presented in this work is distinct
from these.

II. BACKGROUND

In this section, we cover the necessary background on
the projection-based embedding technique and discuss
the molecular orbital (MO) localization methods consid-
ered in this work.

A. Projection-Based Embedding

Quantum embedding schemes for electronic structure
problems aim to reduce the computational cost of a prob-
lem by dividing a molecular problem into smaller (and so
less-costly) subsystems [30]. In this paper, we employ the
projection-based embedding (PBE) method, first pro-
posed by Manby et al. [31], that offers a practical way
to implement formally exact quantum embedding. At a
high level, a molecular problem is split into an active and
environment region. The active system is then solved at
a more accurate (and thus computationally more expen-
sive) level of theory than the environment. The PBE
method allows rigorous embedding of either a wavefunc-
tion subsystem into a self-consistent field (SCF) environ-
ment (WFT-in-SCF embedding) or an SCF subsystem
description in an SCF environment (SCF-in-SCF embed-
ding). Here the SCF method should be thought of as
Hartree-Fock or Kohn-Sham DFT (KS-DFT). We sum-
marise the important details of this model here, where
the environment SCF calculation is performed using KS-
DFT.

To begin, an initial KS-DFT calculation of the en-
tire system is carried out using a low (cheap) level of
theory. This yields a set of molecular orbitals (MOs)
{i(F)|i = 1,2,...,N}. Each MO is formed from a lin-

ear combination of K known atomic orbital (AO) basis
functions {¢;(F)|j =1,2,...,K}:

K
G =3 Cjits (), (1)

j=1

where C is a matrix of MO coeflicients. In general, the
AO basis functions ¢;(7) are not orthonormal. We can
see this by the (K x K) overlap matrix:

Sy = (Bulds) = / 4 6, (7)o (7). (2)

If S is the identity matrix then all the AO basis func-
tions are orthonormal; however, in general this is not
the case. However, linear combinations of these non-
orthogonal AOs, given by the columns of C, construct
orthogonal MOs 1;(7) - i.e. CTSC =1.

In order to partition the molecular problem into an ac-
tive and environment part, these canonical MOs 1; must
first be localized and assigned to a subsystem. This can
be done by different localisation methods - described in
further detail in the Supplementary Material. In effect,
we use a unitary transform U (defined by the localiza-
tion procedure) to spatially localize each v; as much as
possible. The reasoning behind this is introduced next.

Lehtola and Joénsson noted that “total energy in both
Hartree-Fock and KS-DFT is invariant under a unitary
transformation of the occupied-occupied and virtual-
virtual blocks” [32]. This is true because the Hartree-
Fock and KS-DFT wavefunctions are approximated as a
single Slater determinant. From linear algebra, it is well
known that the determinant of a matrix product is given
by the product of their determinants - i.e. for general
matrices det(AB) = det(A)det(B). Using this property
and the fact that the determinant of the identity matrix
is det(I) = 1. Given a unitary matrix V, where VIV = I,
we obtain the following:

1= det(I) = det(VV) = det(V1)det(V)

) 2 3)

= det(V)*det(V) = |det(V)]|~.
This implies that the determinant of any unitary matrix
must have a value of ¢, as || = 1. Therefore, act-
ing with a unitary will leave the Slater determinant un-
changed up to a global phase and so observable quantities
of the wavefunction will be unchanged. Thus the solution
of an SCF problem can be described by a set of different
(unitarily) rotated orbitals. Such a unitary rotation U
can be used to spatially localize each MO ; as much as
possible. The form of U is defined by a particular local-
ization procedure and there are many methods based on
different localization criteria. We denote these orbitals
as localized molecular orbitals (LMOs) or ZM©. The
matrix of orbital coefficients for these localized orbitals
are given by the columns of CEMO defined as:



CL]WO CUu. (4)

This construction ensures the orthonormality condi-
tion of each molecular orbital is still conserved - i.e.
(CLMO)TSCLMO = I. We see this via the following
proof:

(ctMo)igctMo — yictscu
=U'tu =1U'U (5)
=1

This construction allows for U to be determined from C
and CLMO,

(CLMO)TSCLMO — utctsclMo _ 1

— U = CctsciMo ©)

by multiplying on the left with U. The reason we in-
clude equation 6 is sometimes quantum chemistry pack-
ages only return CXM© without U.

In summary, we get the following mapping from canon-
ical to localised molecular orbitals:

Mx
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Next we show how the charge density remains unchanged.

For a closed shell molecule, described by a single deter-
minant wave function, each MO ; contains two electrons
and thus the total charge density is [7]:

p(F) =2 ) i (P)i(F)

- z(i fzcmm)

w; (F) i (7) (8)
K K N/2
DML > CuC RGN
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Here the square brackets define the density matrix v,
(defined in the AO basis):

N/2
Yuv = 2 Z C,uiciia (9>

i=1

that for a set of basis function {¢;(¥)|j = 1,2,...,K}
fully specifies the charge density p(7) [7]. The sum runs
over N/2, as these are the occupied MOs of a closed
shell calculation. The whole matrix can be obtained as
ytotal = 2C yee(Coee) T, where occ denotes only using the
occupied columns of the C matrix (the first N/2 columns,
indexed by 4 in Equation 9). In the localized basis, the
density matrix remains unchanged as:

"YtOtal 2Cjocc (C/‘occ)]L
= 2[C. U] [UT(CLE )] (10)

occ occ
= 2C550(ColO).

Given a set of localised molecular orbitals, we parti-
tion them into two subsystems denoted act (active) and
env (environment). There are different methods to do so
and we summarise our approach in the Supplementary
Material. Overall we generate a set of (occupied) LMO
indices K and L for the active and environment subsys-
tems respectively. The resulting charge density for each
subsystem can then be written as:

ke
,ngv _ 22 CLMO CLMO) (llb)

lel

for closed-shell calculations. The set K U £ contains all
the occupied molecular orbital indices.

The total system electron density is written as a sum
of subsystem densities:

total act

Y ="+ 4"
— 2CLMO(C )T + QCLMO(CLMO)T (12)
ZCLJWO(CLMO)T.

The number of electrons will also be split according
to ntotal — n(ezct + nznv — TI'(S’}/aCt) + Tr(s,yenv) —
Tr(Sfytoml)7 where Tr denotes the trace operation.

The energy of the full system can be found from its
components via [33]:

E[,yact’,yenv] :Tr('YaCthcore) 4 g(,yact) +

energy of isolated act system
Tr(v“"heore) + g(7"") +
energy of isolated env system
b ’Y

nonadditive two-electron energy

(13)

( act env)

Here h.,. is the one-electron core Hamiltonian and g
groups the two-electron terms - Coulomb and exchange



for Hartree-Fock and exchange-correlation for DFT. The
nonadditive two-electron energy is given by:

act env)

gy, y

act em})

=g(Y" "+ ) —g(v*) —g(r™), (14)

and accounts for the interaction between subsystems [33].

Next we want to solve the active system using a higher
(more accurate) level of theory. The effect of the interac-
tion between the active and environment subsystems is
accounted for by additional terms in the core Hamilto-
nian. The Fock matrix for the active system embedded
in the environment system is [31]:

FZf,fb =heore + Vemp + Ppro; + ('ancib)

PTOJ
(15)
= hemb + g(’yernfb)a
where:
Vemb (,Yact 4 ,Yenv) _ g(’y“t), (16&)
hemp = heore + Ve + P;%)] (lﬁb)

The embedding potential V,,; describes all the inter-
actions (nonadditive part) between the active and envi-
ronment subsystems [34]. Due to the subsystem densities
(Equation 12) being constructed from disjoint subsets of
orthogonal orbitals, the normally difficult-to-evalute non-
additive kinetic potential (NAKP) terms [35] are exactly
zero [31, 34, 36].

Pyro; 1s a projection operator that enforces inter-
subsystem (orbital) orthogonality. There are different
ways to define this operator and we consider two in this
work. The first definition was proposed by the Manby
and Miller groups[31]. They use a parameter (u) to shift
the orbital energies of the environment to high energies
- effectively meaning they will never by occupied. This
projector is defined as:

(Pen'u =5 <,¢LJ\/IO‘ pPenv ‘wLMO>
— 88

where p is some large integer, S is the AO overlap matrix.
P is a projector defined as:

(17)

pe — Z [pEMOY (4

el

LMO
Ml (18)

Here we use the notation [ € £ to mean the sum over
the set of occupied MO indices for the environment or-
bitals. It has been shown that p is numerically robust
and can usually be set to u = 10° [31, 33]. In the limit
that © — oo this method is exact, as the environment
orbitals will be pushed to infinite energy and thus will
never be occupied. The action of this operator with the
Fock matrix is:

(F +Py™) [ ) = i [ ™€) (19a)

(F -+ B3 [0F10) = (™ + ) [0 )

19b
< a0, o)
Again, k € K and | € L are occupied LMOs of the ac-
tive and environment subsystems respectively. Qualita-
tively the orbital energies of the active system are left un-
changed and the orbitals for the environment are pushed
to very high energies as j1 >> € - effectively suppress-
ing transitions to these states and stopping hybridisation.

The second approach, proposed by Kallay et al. [37],
is to use the Huzinaga projector [38, 39]:

ZZI; — _(FPen'u + PenvF)
1 20
=-3 (Fy°"’S 4+ Sy°""F). (20)

Note that the — prefactor is needed for closed-shell sys-
tems. This operator enforces orthogonality of the occu-
pied orbitals of each subsystem [40]. The form of this
operator increases the orbital energy for the occupied
environment orbitals and leaves the active system un-
changed. We write its action formally as:

(F+ P [6EM0) = g [uf0), (21a)
(F + (;L’Z,L; |wLMO> (elenv . 2€env) |1/}LMO>

1 env |wLMO> (21b)

It is usually the case that for the occupied molecular or-
bitals €/™" is negative and so equation 21b shows how the
env1ronment €/"" orbitals are normally shifted to positive
energies and thus will not be filled. This formalism guar-
antees that [P§"Y Fe 1 = 0 and removes the need for
the p parameter shift [41]. If any occupied MO has a
positive €/", then equation 20 can be modified to treat
such systems correctly - this operator is known as the
“Fermi-shifted Huzinaga operator” [42].

The energy of the active system embedded in the en-
vironment is given by:

Elyemp: v 7] = Elvén] + Elvend] + 807", 77™)

+ T (9858 = 7) (Vems + P;;zsp)
(22)
colloquially denoted as a DFT-in-DFT calculation.

We use the same notation as Claudino and coworkers
[33], where & differs from F as it allows for different func-
tionals to be applied and is computed from the embedded
density matrix of the active system. Note that Equation

15 is solved self-consistently to give v%¢!,. Equation 22



reduces to Equation 13 for the case that the active and
environment regions are treated at the same level of the-
ory [33].

Importantly £y, ] = Tr(v% heore) + g(72<%,) and
does not involve Ve, or Ppi0. The final term in Equa-
tion 22 is a first-order correction that accounts for the
difference between g(y°“*,7*") and g(y%,, "), and
corrects for the fact that in general vt # %<t [43].

This projection based embedding approach then allows
for the active system to be treated using some wave func-
tion level of theory and therefore studied using a quan-
tum computer. The electronic energy for this is given by

[33]:

E[Wgﬁb;7a6t7 ,_yenv} = <\I/Zf£b| Hemb |\I]Zf£b> + Eh/env]

() = T (YU Ve + Pt )

(23)

Importantly Hemp = hepp + (02, ), where g(09<,)
is the two-electron operator for a given wave function
method and he,,;, is the embedded core Hamiltonian
(Equation 16b) which depends on v*“* and v [44]. As
the embedding terms have been included in He,,;, the fi-
nal correction term is therefore slightly different to Equa-
tion 22 [43]. The wave function calculation in Equation
23 includes contributions from (Ve + PEPY.) - similar

proj
to: Tr(vgf,fb(vemb + P;}}gj)). The correction therefore

only requires subtracting Tr (7“Ct (Vems + P;ﬁgj)), unlike
in Equation 22, where £ does not use (Vempy + PE™)) to

proj
calculate the energy of the active system.

B. MO localisation methods

In this work, we only use the Subsystem Projected
AO DEcomposition (SPADE) and intrinsic bonding or-
bitals (IBO) localized molecular orbitals [33, 45]. The
motivation for using SPADE is primarily that it does not
require a parameterised heuristic to determine the active
and environment subsystems. Futhermore, unlike most
localization schemes that attempt to localize orbitals in
atoms or bonds, SPADE orbitals are local only in the
sense that they remain in their native subsystems, which
is one of the requirements for successful embedding [33]

IBOs were used as they only depend on the intrin-
sic atomic orbital charges, rather than Mulliken charges
which change erratically depending on the basis set used
[45]. IBOs are therefore always well-defined, whereas
other localization methods - such as Pipek-Mezey or-
bitals [46], which depend on the Mulliken charges [47]
- are unphysically tied to the basis set used [45]. For the
IBO approach, we calculate the percentage of the i-th
LMO over atoms a user defines as the active subsystem.
Any LMO that has a percentage higher than a thresh-
old (here 95 %) was assigned to the active region. The
SPADE approach does not require this predefined thresh-
old hyper-parameter. However, it does use a function of

the molecular orbital coefficient matrix. Further details
on both approaches are given in the Supplementary Ma-
terial.

The effect of different localisation methods for this
embedding method, such as: Pipek-Mezey (PM) [46],
Foster-Boys (FB) [48], Edmiston-Ruedenberg (ER)[49]
and fourth moment (FM) localization [50], would be an
interesting area to explore. Our software package Nbed
can run any method given by PySCF, and users can also
build their own localisation strategies themselves [51].

III. METHOD

We studied the performance of our wave function pro-
jection based embedding method on a selected set of
molecular systems. We have developed a python package,
Nbed, that utilizes the PySCF and Openfermion quan-
tum chemistry packages to build each embedded model
[62, 53]. The package outputs a qubit Hamiltonian for
the wave function portion of an embedded problem and
the classical energy corrections from density functional
theory. This is freely available for use on GitHub [51].

For all calculations presented, the minimal STO-3G
basis set was employed. Each global DFT calculation
performed, prior to orbital localisation, used the B3LY P
functional. The Intrinsic Bonding Orbitals (IBO) or Sub-
system Projected AO DEcomposition (SPADE) localisa-
tion procedures are used in order to isolate the molec-
ular orbitals to the active and environment subsystem
from pre-selected active atoms [33, 45]. For the IBO pro-
cedure, in order to assign the active and environment
molecular orbitals, we calculate the percentage of the
iz, LMO over atoms a user defines as the active sub-
system. Any LMO that has a percentage higher than a
predefined threshold (we used 95 %) is assigned to the
active region. This paper’s Supplementary Material goes
into further detail on each localisation strategy. We per-
formed both the p-shift and Huzinaga methods for each.
A Hartree-Fock calculation for the active system, using
the modified core Hamiltonian (equation 16b), was per-
formed for each molecular system. The second quan-
tized molecular Hamiltonian was then constructed with
Openfermion and converted to a qubit Hamiltonian us-
ing the in-built Jordan-Wigner transformation [54]. Post
Hartree-Fock methods were performed with PySCF. The
frozen core approximation was not used and all virtual
orbitals were included in the wave function calculations.
Only the occupied environment molecular orbitals were
removed from the wave function calculations of the ac-
tive systems. To achieve this, the columns of C (the
matrix of MO coefficients) associated with the environ-
ment were masked and not considered by further post
Hartree-Fock (HF) methods on the embedded active sys-
tem (the WF part of a WF-in-DFT calculation). The
removal of these (occupied) environment orbitals is what
gives a qubit reduction (when constructing the second
quantized molecular Hamiltonian). We note that this



removal approach is slightly different to the implemen-
tation of Goodpaster and coworkers [41], where these
orbitals are left in the embedded calculation. Our ap-
proach is justified as the environment MOs have been
projected out of the SCF problem. More qualitatively, in
Goodpaster’s approach the results of the Huzinaga and
p-shifted approaches are very similar [41]. For the p-
shifted approach, the occupied environment orbitals are
shifted to such high energies that they remain unoccu-
pied in subsequent post-HF calculations. This is not the
case for the Huzinaga method but, as it gives similar re-
sults to the p-shifted technique, removing the associated
(occupied environment) orbitals of the Huzinaga method
follows inline with them not being able to be occupied in
the p-shifted approach.

For the single point electronic structure calculations we
perform a CCSD-in-DFT calculation (active subsystem
treated at CCSD level). Each result is then compared
to full system CCSD(T) calculations. Each molecular
geometry was obtained from PubChem [55]. The po-
tential energy surface of a OH bond stretching in water
was calculated using FCI-in-DFT, where the embedded
molecular Hamiltonian at each geometry was diagonal-
ized to find the ground state energy of the active system.
This was compared to a full system FCI calculation at
each step. As the PBE model requires a full system DFT
calculation to determine the active and environment sub-
systems, we also report these DFT results.

IV. RESULTS AND DISCUSSION

In the following subsections, we apply our model to
different molecular systems.

A. Molecular Ground State Energy

In order to assess the ability of the embedding pro-
cedure, we selected a test bed of molecular structures -
which are summarised in Figure 1. The active atoms
considered at a more expensive level of theory are high-
lighted in green. The choice of these molecules was mo-
tivated by selecting compounds commonly encountered
by chemists. To date, most quantum computing stud-
ies consider only the smallest molecular systems (often
Ho, LiH, BeHs) [17, 57, 58], due to current quantum
computing constraints - low numbers of qubits numbers
and high error rates. The goal of this paper is to show
this embedding approach will allow larger systems to be
studied on such devices. Figure 2 reports that the results
for SPADE localized CCSD-in-DFT embedding molecu-
lar ground state energy calculations for the molecules in
Figure 1. Numerical values of these results are available
in this paper’s Supplementary Material. The results for
the same calculations using IBO localized orbitals can
also be found in the Supplementary Material.

The embedded FCI Hamiltonians (describing the ac-
tive region) output using both localisation methods were
significantly reduced in number of terms and qubit counts
compared to the full system FCI Hamiltonian. However,
they still exceed the limit of what is practical to exactly
solve using classical computers. We therefore performed
classical CCSD-in-DF'T calculations, the results of which
are given in Figure 1(a). Our results show increased accu-
racy in CCSD-in-DFT calculated molecular ground state
energies, compared to full system DFT. We benchmarked
these approaches compared to full system CCSD(T), as
full system FCI was not possible. The following met-
ric was used |AE| = [Eczp — Eccsp(ry| to approximate
the true error |AEyye| = |Eewp — Ercil|, where Eeyy
is the ground state energy calculated calculated via dif-
ferent procedures as specified and Eccsp(r) is a full
system CCSD(T) reference ground state energy that is
used to approximate each (full system) FCI ground state
energy Fpcor. Our results show that PBE embedding
gives ground state energies closer to the reference value,
namely the full system CCSD(T) energy. It is known
that different DF'T functionals will give different ground
state densities and thus energies [59]; however, there will
always be a true ground state wavefunction and energy.
The results in Figure 2 show that we can improve on
the results of a DFT calculation by getting closer to the
ground state energy - which in our case we approximate
with CCSD(T). Qualitatively, we attribute the improve-
ment of our PBE method to it including different correla-
tion effects not captured by the DFT calculation. Further
evidence of this will be seen in the next section on strong
correlation.

Typically, results for the p-shift and Huzinaga pro-
jectors are very similar. This is expected as the active
and environment subsystems were described in the super-
molecular basis in our implementation of PBE [37, 41].
If the subsystems were described in an alternate basis, it
has been shown that the Huzinaga operator outperforms
the p-shift approach [41]. In our results, the Huzinaga
projector usually produces marginally more accurate en-
ergies compared to the p-shifted implementation. We
attribute this to the Huzinaga approach being based on
a formally exact embedding, while the p-shift embedding
is approximate due to a finite shift value being used.

The number of qubits describing the embedded FCI
Hamiltonian (of a FCI-in-DFT problem) will be the same
between the embedding methods - Figure 1b. This is due
to the number of qubits depending on how many spin or-
bitals are considered in the embedded active system. In
this work, only the occupied molecular orbitals of the en-
vironment are removed from the embedded active subsys-
tem WF calculations (which leads to a qubit reduction).
To further reduce the qubit count, virtual (unoccupied)
molecular orbitals should also be removed from the em-
bedded active subsystem calculations. This requires par-
titioning of the virtual space between the active and envi-
ronment subsystems. Recent work by Yuan and cowork-
ers, shows that truncating the virtual space can still give
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FIG. 1: Planar representations of the molecules used in embedding calculations. Atoms shaded in green were
selected as active for localisation procedures. Images were generated using MolView [56]. la N-methylmethanamine;
1b acetaldehyde; 1c acetonitrile; 1d ethanamine; le ethanol; 1f flouroethane; 1g formamide; 1h water (fixed bond
active); 1i water (stretching bond active)

reliable estimates of both energies and molecular proper-
ties and we anticipate that this result will also be found
if virtual environment orbitals are removed from the ac-
tive embedded subsystem [60]. We leave this to future
work, but note that it could lead to a significant further
reduction in the number of qubits.

The number of terms in the Jordan-Wigner encoded
qubit FCI Hamiltonian of the embedded WF problem
(FCI-in-DFT problem), |H|, is typically very similar be-
tween the two projection methods, as shown in Figure 1c.
This is expected as the number of molecular orbitals used
to describe the embedded problem is the same between
the different projection methods.

In comparing the two localisation methods, we find
that for acetonitrile and formamide, SPADE and IBO
partition the active system in a similar way. This re-
sults in a similar number of active MOs and hence the
ground state estimation and resource requirements are
very similar for these systems. For the majority of the
molecules we study, SPADE includes more MOs, result-
ing in significantly more accurate ground state energies
while still reducing the size of the Hamiltonian. However,
by reducing the threshold for assigning the localized MOs
from IBO to the active region, additional MOs could be
included giving a similar result. See the Supplementary
Material for further details.

B. Strong Correlation

The impact of active region selection is demonstrated
by our results shown in Figure 3, where SPADE local-
ization was used in the embedding calculations (results
for IBO localization are provided in the Supplementary
Material). We consider the bond dissociation of an OH
bond in water, where at high bond lengths, a correlated
state is created [61, 62]. We perform projection based
FCI-in-DFT calculations, at different molecular geome-
tries, for two different active regions. One has the atoms
in the fixed OH bond set active and the other has the
atoms in the changing OH bond set active. We show this
pictorially in Fig. 1h and 1i. These results are compared
to full system FCI calculations.

At near equilibrium bond lengths, we see a similar per-
formance between the different active systems (Figure 3).
This is due to the symmetrical structure of HyO, hence
at low bond lengths there is little difference between the
two active regions. In fact, the third data point gives
results for the scenario where both OH bonds are the
same length and consequently is why the results for the
different active regions are the same here. However, in
the correlated regime - at large bond lengths - select-
ing the active region to encompass the stretched atoms
leads to significant improvements in energy calculation
over DFT alone. This is due to correlation being ef-
fectively captured in the wave function calculation. In
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FIG. 2: Results for embedding of small molecules (Figure 1) using the SPADE localisation method. Bar chart (a)
reports the ground state energy error for small molecules compared to full system CCSD(T):
|AE| = |Ecap — Ecosp(ry|- For the blue result Ee,, is the full-system DFT (B3LY P) ground state energy, for the
orange result Ee,, gives the p-shift CCSD-in-DFT embedding energy and for the grey result ., is the Huzinaga
CCSD-in-DFT embedding energy. Plot (b) shows the number of qubits needed to describe the embedded
Hamiltonian, with the reference showing the number required for the full system FCI Hamiltonian. Plot (c¢) reports
the number of terms in the Jordan-Wigner encoded embedded FCI-in-DFT Hamiltonian for each molecule with the
blue bar representing the number of terms in the FCI Hamiltonian of the full system.

contrast, the full DFT calculation is plagued by deficien-
cies of current approximate exchange-correlation func-
tionals [63, 64]. We see in Figure 3 that the global DFT
calculation overestimates the bond dissociation energy.
This problem is attributed to static correlation [63]. As
there is no systematic way to improve the approximate
exchange-correlation functionals, the way forward to de-
scribe such systems may be hybrid quantum-classical em-
bedding. Here quantum processors could be exploited
most effectively by application to only those regions of
a molecule that are highly correlated. Finally, we note
that all the DFT calculations performed in this work were
restricted. At large bond lengths, it is known that spin-
unrestricted calculations can often better describe bond

dissociation; however, the major drawback of the method
is spurious symmetry breaking [65]. Bearing this in mind,
our results show that WF embedding combined with a
restricted calculation can still capture major correlation
effects.

V. CONCLUSIONS

For a small collection of molecules, too large to study
completely (full system) on currently available quantum
hardware, we have shown that the PBE method allows a
smaller active system to be studied using less resources
on a quantum computer and the calculated energies of
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FIG. 3: Potential energy curve for HoO, with changing OH bond length. Active stretch result has the changing OH
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Hamiltonian. The blue result gives the size of the full system Hamiltonian, the orange and yellow results are for
pu-shifted embedded Hamiltonians while the grey and black results are for the Huzinaga embedded Hamiltonians.
Numerical details are available in this paper’s Supplementary Material.

such embedding calculations are closer to the “gold stan-
dard” CCSD(T) of the full system compared to full sys-
tem DFT. Furthermore, we have shown its ability to cap-
ture the effects of strong correlation by investigating the
bond dissociation of HyO.

We use the projection-based embedding technique [31]
to reduce the size of an electronic structure calcula-
tion studied at the wave function level. The molecu-
lar problem is split into active and environment parts,
each solved using different levels of theory. The active
part is treated using a wave function approach and an
embedded qubit Hamiltonian is generated. Solving this
provides EWVI = (wact | H,,,;, |¥2,). The whole sys-
tem and environment are treated using density functional
theory and the overall electronic energy is found via an
additive procedure [41, 43, 44]. This is similar to the own
n-layered integrated molecular orbital and molecular me-
chanics (ONIOM) subtractive framework [66]. What is
included in the active region can be modified and thus
the size of the quantum problem varied. This allows users
to tune their problem to available hardware and so it is

possible to simulate large molecular problems on small
quantum devices.

As this approach generates an embedded qubit Hamil-
tonian, it is agnostic to the quantum algorithm used
to solve Hepp. NISQ friendly approaches such as the
VQE algorithm can therefore be used, but also fault-
tolerant methods such as quantum phase estimation
(QPE) [12, 17].

Moreover, as our method outputs a qubit Hamiltonian,
different resource reduction techniques can be used in
conjunction with it; for example, the contextual-subspace
approach of Kirby and coworkers, [67] or the entangle-
ment forging approach of Eddins [62]. Similarly, the Zo-
symmetries of the problem can also be removed via qubit
tapering [68].

As our method does not rely on imposing constraints
on the system studied or costly parameter fitting, it may
be reasonably combined with other hybridisation tech-
niques which do[20, 69].

Further work is planned to develop this method. As
significant resource reduction is achieved by localisation



of only the occupied orbitals, virtual orbital localisation
could lead to a greater reduction in computational re-
sources [70]. In the context of this work, if virtual LMOs
are included in the active and environment subsystems
respectively, then the number of qubits will reduce by
how many are included in the environment. This will also
have the effect of decreasing the total number of Pauli op-
erators in the associated embedded qubit Hamiltonian.

We anticipate that our code will allow researchers to
study molecules of real chemical interest on quantum
computers. We welcome readers to make use of this,
which is freely available on GitHub [51].
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